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a b s t r a c t

Fisher information (I) is investigated for confined hydrogen atom (CHA)-like systems in conjugate r and p
spaces. A comparative study between CHA and free H atom (with respect to I) is pursued. A detailed sys-
tematic result of I with respect to variation of confinement radius rc is presented, with particular empha-
sis on non-zero-ðl;mÞ states. In certain respect, inferences in CHA are significantly different from free
counterpart, such as (i) dependence on n; l quantum numbers (ii) appearance of maxima in Ip plots for
jmj – 0. The role of atomic number and atomic radius is discussed.

� 2017 Elsevier B.V. All rights reserved.

1. introduction

In the first half of the twentieth century, Michels et al. [1]
designed and proposed a simple model in which a hydrogen atom
was enclosed in an impenetrable spherical cavity keeping the
nucleus at centre. For these confined quantum systems, the wave
function vanishes at a particular boundary which lies at a finite dis-
tance but may be extended up to infinity. In such a situation, the
particle shows interesting, distinctive changes in its observable
properties [2,3]. Such a model of confinement can be exploited as
a realistic approximation to various physical and chemical envi-
ronments [4], with particular importance in the field of condensed
matter, semiconductor physics, astrophysics, nano-science and
technology, quantum dots, wires and wells [5,6,8]. In last few dec-
ades, confined quantum systems like atoms, molecules either in
fullerene cage or inside the cavities of zeolite molecular sieves,
and in solvent environments, have been explored extensively
[6–8].

In recent years, information theory has emerged as a subject of
topical interest. At a fundamental level, this explicitly deals with
single-particle probability density qðsÞ of a system (s is a general-
ized variable). Hence, statistical quantities directly related to qðsÞ
have their importance in predicting and explaining numerous
interesting phenomena in both physics as well as in chemistry
[9]. A few examples of them are information entropies like Rényi
(R) and Shannon (S) entropy, Fisher information (I), Onicescu
energy (E), etc. As a consequence of the fact that, I represents the
gradient functional of density, it measures the local fluctuation of

space variable. An increase in I indicates localization of the particle.
In other words with the rise in I, the density distribution gets con-
centrated as well as uncertainty reduces [9]. It is important to note
that, I resembles the Weizsäcker kinetic energy functional (Tx½q�)
frequently used in density functional theory (DFT) [10]. Lately, a
Euler equation in orbital-free DFT has been formulated with the
help of I and S [11]. For spherically symmetric systems this equa-
tion can be formalized by using only a specific form of I [11].
Because of its ability to predict and explain versatile properties, I
has been especially invoked to explore Pauli effects [12,13], ioniza-
tion potential, polarizability [14], entanglement [15], avoided
crossing [16], in atomic systems. In molecular systems, I has been
exploited to investigate steric effect [17,18], bond formations [19],
elementary chemical reactions [20].

About a decade ago, numerical investigation of I for ground-
state of neutral atoms [21,22] was made. Some analysis from ana-
lytical standpoint was given in [23], where the authors formulated
a pair of equations to compute Ir; Ip in central potentials. Accord-
ingly, they are expressed in terms of four expectation values viz.,
hp2i; hr�2i and hr2i; hp�2i respectively. In recent time, I in both r
and p spaces have been reported for various model diatomic poten-
tials, such as Pöschl-Teller [24], pseudo-harmonic [25], Tietz-Wei
[26], Frost-Musulin [27], Generalized Morse [28], and
exponential-cosine screened coulomb [29] potential.

Study of I in a confined hydrogen atom (CHA) is quite scarce. We
are aware of only the work of [30], where it was considered for
CHA under soft and hard confinement for the ground state only.
In this endeavor, our primary objective is to perform an explicit
analysis of I in a CHA-like system, for any arbitrary state character-
ized by the principal, azimuthal and magnetic quantum numbers
n; l;m in conjugate spaces with a special emphasis on l;m– 0
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states. Elucidative calculations are performed with exact analytical
wave functions in r-space; whereas the p-space, wave functions
are obtained from numerical Fourier transform of the r-space
counterpart. Representative results are given for
1s;2s;2p;3s;3d;4s;4f as well as 5s-5g and 10s-10m states, to
understand the various effects. Here, we have envisaged all the
allowed m’s corresponding to a given n and l, which allows one
to follow the detailed changes in the behavior of states with differ-
ent m as the environment switches from free to confinement.
Changes are also monitored with respect to Z in H-isoelectronic
series under confinement. It may be relevant to mention a recent
detailed study [31] of S in CHA along the same line. Section 2 gives
a brief description of the theoretical method used; Section 3 offers
a detailed discussion of results of I, while we conclude with a few
comments in Section 4.

2. Methodology

The non-relativistic radial Schrödinger equation for a confined
H-like ions, without any loss of generality, may be written as
(atomic unit employed, unless otherwise mentioned),
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where vðrÞ ¼ �Z=r ðZ ¼ 1 for H atom). Our required confinement
inside an impenetrable spherical cage is introduced by invoking
the following form of potential: vcðrÞ ¼ þ1 for r > rc , and 0 for
r 6 rc , where rc implies radius of confinement.

Exact generalized radial wave function for a CHA is mathemat-
ically expressed as [32,33],
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where Nn;l represents normalization constant and En;l denotes
energy eigenvalue of a given state distinguished by n; l quantum
numbers, whereas 1F1½a; b; r� is a confluent hypergeometric func-
tion. Allowed energies are enumerated by imposing Dirichlet
boundary condition, wn;lð0Þ ¼ wn;lðrcÞ ¼ 0 in Eq. (2). In this work,
generalized pseudospectral (GPS) method has been applied to com-
pute En;l of CHA. This method has produced very accurate results for
the various model and real systems including atoms and molecules
in the last decade; some of which could be found in Refs. [34–37].

The p-space wave functions are obtained numerically from
Fourier transform of r-space counterpart, and as such given as,
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Here nðpÞ needs to be normalized. The normalized r- and p-space

densities are represented as, qðrÞ ¼ jwn;l;mðrÞj2 and

PðpÞ ¼ jnn;l;mðpÞj2 respectively. Let Ir; Ip denote net information
measures in conjugate r and p space of CHA. It is well established
that, for a single particle in a central potential, these quantities
can be written in terms of radial expectation values hrki and
hpki; ðk ¼ �2;2Þ [23], as below,

Ir ¼
Z
R3

jrqðrÞj2
qðrÞ

" #
dr ¼ 4hp2i � 2ð2lþ 1Þjmjhr�2i ð4Þ
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The above equations can be further recast in the following forms,

Ir ¼ 8En;l � 8hvðrÞi � 2ð2lþ 1Þjmjhr�2i ð6Þ
Ip ¼ 8En;l � 8hvðpÞi � 2ð2lþ 1Þjmjhp�2i: ð7Þ
where vðpÞ is the p-space counterpart of vðrÞ.

In case of H-isoelectronic series, I’s in r and p space are
expressed as;

IrðZÞ ¼ Z2IrðZ ¼ 1Þ; IpðZÞ ¼ 1
Z2 IpðZ ¼ 1Þ: ð8Þ

Hence, an increase in Z leads to rise in IrðZÞ and fall in IpðZÞ. How-
ever, it is obvious that It ð¼ IrIpÞ remains invariant with Z. Through-
out this work, IrðZ ¼ 1Þ and IpðZ ¼ 1Þ will be denoted as Ir; Ip
respectively.

When m ¼ 0; Ir and Ip in Eqs. (4) and (5) reduce to simplified
forms as below,

Ir ¼ 4hp2i; Ip ¼ 4hr2i: ð9Þ
It is seen that, at a fixed n; l, both Ir and Ip are maximum when
m ¼ 0, decreasing with rise in m. Hence one obtains the following
upper bound for It ,

IrIp ð¼ ItÞ 6 16hr2ihp2i ð10Þ
Further manipulation using Eqs. (4) and (5) leads to following
uncertainty relations [23],

81
hr2ihp2i 6 IrIp 6 16hr2ihp2i: ð11Þ

Therefore, in a central potential, I-based uncertainty product is
bounded by both upper and lower limits. They are state dependent,
varying with alterations in n; l;m.

3. Result and discussion

Before we begin, let us examine the nature of the radial proba-
bility density for some arbitrary states in CHA. For this purpose we
offer Fig. S1 in supplementary material (SM), where these distribu-
tions have been plotted for 5s-5g states at four different rc values
namely 1;5;10;20 (panels (a)–(d)). As expected, in all these states
delocalization predominates with an increase in rc . Also one gets
the desired number of nodes in the plots.

Now, it is appropriate to mention a few points for ease of dis-
cussion. To ensure a good accuracy of calculated quantities in r
space, two sets of Ir were calculated: the first route involves the
use of Eq. (4) requiringrqðrÞ, and the second route employs a sim-
plified expression for central potentials through the expectation
values, given in Eq. (6). However, the p-space calculations are done
completely numerically via Eq. (5) and convergence is checked
with respect to variation in grid parameter (nr , the number of
radial points in p space). Table S1 of SM offers our computed Ir; Ip
values, side by side, to illustrate their convergence. For all states
under consideration, convergence is ensured in this manner; so
all the results reported in future tables show only those decimal
places up to which convergence was attained. The net I in both
space can be separated into radial and angular parts. But in both
Ir and Ip expressions, angular part is normalized to unity. Hence,
evaluation of all these desired quantities using only radial part will
serve the purpose. The radial parts of the wave function in r; p
spaces depend on n; l quantum numbers. Hence, p-space radial
wave function can be generated by putting m ¼ 0 in Eq. (3). Fur-
ther, a change in m from zero to non-zero value will not affect the
form of the radial wave function in p space. Confinement in the
hydrogen atom is accomplished by pressing the radial boundary
from infinity to a finite region. To achieve this effect, pilot
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