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a b s t r a c t

The soil is characterized by the influence of the hydrostatic stress, which leads to a yield surface with a

shape of a pyramid for Mohr–Coulomb criteria and a shape of a cone for Drucker–Prager one. These

materials are also characterized by a non-associated plasticity where the plastic yielding rule does not

follow the normality rule. The usual mechanical models use two independent functions to describe this

particular collapse. Unfortunately, this manner broke the model formulation. The purpose of this work

is to present a consistent formulation of the non-associated plasticity of soil. The frame of the

mathematical analysis is the concept of the implicit standard material. The cornerstone of this new idea

is the construction of a single function called the bipotential playing in the same time the roles of the

yield surface and the plastic potential. The bipotential concept is then intended to involve the

constitutive law, cover the normality rule even for the non-associated soil and the proof of the solution

existence. The formulation was initially performed for the case of a regular point out of the cone apex

and in present, it is extended to the irregular point located at the apex. The paper presents firstly the

implicit standard material method. Then, the methodology to build a full model for the boundary value

problem is detailed. Particular expressions and relations are sufficiently explained and discussed.

Attention is made to the evolution problem and the variational principles related to the elastic–plastic

behavior.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The soils are characterized by special effects such as volume
change even in plastic range, presence of softening in the load–
displacement curve and a significant decrease of the limit load
with respect to the corresponding standard material [1]. So,
compared with metallic materials, they are non-standard solids
[2] and for evident reasons, rigid perfectly plastic models were
extensively used in analytical problems. One cites, slip line theory
[3], limit equilibrium theory [4,5] and limit analysis [6]. In limit
analysis theory, several works can be noted such as in [7].
Recently, with the progress of experimentations and numerical
methods, sophisticated models have been proposed such as non-
associated elastic–plastic behavior [8]. In the later model, a new
parameter is introduced: the angle of plastic flow or plastic
dilatancy angle y, which lies within the range [0, j], where j is
the internal friction angle. The case y¼0 corresponds to plasti-
cally incompressible materials and the case of y¼j corresponds
to associated plasticity. All cases where yA[0, j] is non-associated
in the sense that the rate of plastic flow is not normal to the

level-set of yield function f(r). In non-associated plasticity, a
second function g(r) called the plastic potential is usually
introduced to model the flow rule independent of the yield
function such that the normality rule is disabled. This approach
is a simple artifice but it has the drawback to lose the consistence
of the formulation. So, solution existence is not established. Also,
this approach leads to a non-symmetrical system of equations.
Some works have tried to recover the symmetrical system by the
introduction of an artificial hardening [9,10] or by the use of an
energy equivalence principle [11]. Presently, a more fruitful
alternative is presented. Generalizing the Fenchel’s inequality to
materials and systems with non-standard behaviors [12], it is
possible to build a new class of mixed formulation using only one
function known as the bipotential. It plays at the same time the
roles of potential of dissipation and the yield function. This
formalism leads then to a complete model able to proof the
solution existence of the boundary value problem for non-
associated flow rule. To recover the key-concept of normal
dissipation, the method expresses the constitutive law under an
implicit relation. The material admitting a bipotential function is
called implicit standard material (ISM). This approach has known
relatively intensive works since its appearance in the 1990 years.
Among the applications of bipotentials one cites: Coulomb’s
friction law [13], non-associated Drucker–Prager criterion [14]
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and Cam–Clay models [15] in Soil Mechanics. A review of other
laws expressed in terms of the bipotentials can be found in
[16,17]. Recently the method was extended to frictional contact
with cohesive zone [18]. Newton–Raphson method is widely used
in step by step computations but its efficiency is considerably
decreased when a non-associated model is considered. To avoid
this pitfall, a modified version was proposed for the implicit
standard material approach with non-associated soil [14]. The
work remains unachieved because it requires a general formula-
tion for any stress’s state on the yield surface. This is our aim in
this work together the use of the solid mechanics principles to
rewrite the formulation with simpler manner and more inter-
pretations of the mathematical expressions. Lastly, all the pre-
vious papers related to the subject are based on convex analysis
and generally not accessible to engineering writing. Linking
between the formulation steps is not detailed. Hence, the paper
tracks the following organization. A short statement of the
boundary value problem specifies some notations and exposes

needs in formalism. Then, the bipotential concept is recalled.
Next, a detailed non-associated flow rule for soil is described
using the implicit standard material method. This target consti-
tutes the subject of several sections having as final purpose the
construction of the incremental elastoplastic bipotential function.
Then, the question of the solution existence is raised, which
conducts to the development of a generalized minimum principle
using the new concept of the bifunctional.

2. The boundary value problem

Let us consider a solid of volume V, with external surface S and
density r. The solid is subjected to forces of volumes f and surface
forces T acting on ST a part of the external surface. Cauchy stress
principle stipulates appearance of internal surface forces r¼(sij)
ensuring the transmission of efforts and equilibrium of solid such
that stress field r is statically admissible. Here, for practical

Nomenclature

b bipotential function
c cohesion
dS surface element
dv elementary volume
e strain deviator
e (index or exponent) relating to elasticity or to finite element
ee elastic part of strain deviator
ep plastic part of strain deviator
em trace of strain
em

e trace of elastic strain
em

p trace of plastic strain
f yield function
f forces of volume
g plastic potential
i (index) relating to an iteration
k (exponent) relating to an iteration or to kinematically

admissible field
kd parameter
n whole number
n̂ unit vector in deviator space
p (index or exponent) relating to plasticity
s stress deviator
s (exponent) relating to statically admissible field
sm trace of stress
smr trace of stress residue
sr residue of stress deviator
t time
u displacement field
u (index)relating to displacement
un approximate displacement field
u imposed displacement vector
x generalized variable or position vector
y generalized variable
B bifunctional
Cm convex set
Cm
n convex set

D local tangent matrix
De elasticity matrix
E Young modulus
G shear modulus
I identity matrix
Kc bulk modulus

S external surface
ST external surface liable to traction
Su surface liable to liaisons conditions
T (exponent) transpose of a matrix
T surface tractions
V potential function
W complementary potential function
e strain tensor
ec constant
ed constant
g strain deviator
y dilatancy angle
ke convex set for strain
ks convex set for stress
l Lamé constant, Augmented lagrangian multiplicator
m Coulomb’s shear modulus
n Poisson’s ratio
r density
r stress tensor
rr stress tensor residue
j internal friction angle
ck convex k indicator function
D finite increment
1 (index)relating to step end
�1 (exponent) inverse operator
n (exponent) relating to some quantity
, (index) partial or total derivative
inf inf operator
tan tangent function
@ differential operator
@x differential operator with respect to variable x
@,x derivative operation with respect to variable x
J.J Euclidian norm
&x inf convolution product with respect to variable x
. scalar product
{.}þ positive part
. (accentuation) indicate rate
0 (accentuation) indicate some variable
^ (accentuation) indicate approached quantity
- (accentuation) indicate an imposed quantity
I.S.M. implicit standard material
K.A. kinematically admissible field
S.A. statically admissible field
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