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a b s t r a c t

Travelling waves of densities of binary fluid mixtures are investigated near a critical point. The free

energy is considered in a non-local form taking account of the density gradients. The equations of

motions are applied to a universal form of the free energy near critical conditions and can be integrated

by a rescaling process where the binary mixture is similar to a single fluid. Nevertheless, density

solution profiles obtained are not necessarily monotonic. As indicated in Appendix, the results might be

extended to other topics like in finance or biology.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In physical chemistry, thermodynamics and condensed matter
physics, a critical point specifies the conditions (temperature,
pressure and concentration) at which distinct phases do not exist
[6,9,29]. There are multiple types of critical points such as
vapour–liquid or liquid–liquid critical points. A single fluid has
a unique critical point associated with given temperature, pres-
sure and density. For binary mixtures of fluids, in the space of
temperature, pressure, concentration, critical points are repre-
sented by a curve in a convenient domain [26]; to each tempera-
ture we can associate a critical pressure and two critical densities
corresponding to the mixture components [13,36].

An important thermodynamical potential is related to the
mixture volume free energy [32–34]. At a given temperature,
the volume free energy is associated with the spinodal curve
connecting the two different phases of the binary mixture. Due
to conditions of equilibrium of phases, it is possible to form
a general expansion of the free energy near a critical point.
This form is known in the literature by means of physical
chemistry considerations [37] and is the form we use in our
calculations.

By calculations in molecular theories, the densities of the
components fluctuate near a critical point [24]. In the following,
we use a continuous model to investigate how the average

variations of densities are related to molecular interactions. Two
assumptions are explicit [4,18,38]:

(i) The component densities are assumed to be the smooth func-
tions of the distance from an interface layer which is assumed to
be flat on the scale of molecular sizes. The correlation lengths
are assumed to be greater than intermolecular distances
[21,23]; this is the case when at a given temperature T the
parameters are close to the ones of a critical state [35].

(ii) The binary mixture is considered in the framework of a mean-
field theory. This means, in particular that the free energy of
the mixture is a classical so-called ‘‘gradient square func-
tional’’. This kind of Landau–Ginzburg model consisting of a
quadratic form of the density gradients comes from Maxwell
and van der Walls original ideas [27,31,42,44]. At given critical
conditions, the coefficients of the quadratic form are constant.

This point of view that, in non-homogeneous regions, the mixture
may be treated as bulk phase with a local free-energy density and an
additional contribution arising from the non-uniformity which may
be approximated by a gradient expansion truncated at the second
order is most likely to be successful and perhaps even quantitatively
accurate near a critical point [37]. The approximation of mean field
theory does provide a good understanding and allows one to
explicitly calculate the magnitude of the coefficients of the model.
These non-linear equations are able to represent interface layer and
bulks and consequently allow to build a complete theory of the
mixtures in non-homogeneous domains in dynamics.

In Section 2 we recall the equations of motion in a pure
mechanical process obtained through the Hamilton variational
principle.
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Section 3 is devoted to travelling waves without dissipation.
Due to the fact that the equations are Galilean invariant, the case
of equilibrium and the case of motion are analyzed together.

In Section 4, by means of a rescaling process taking the vicinity
of a critical point into account, we integrate the equation for
equilibrium as well as for motions with dissipation.

Two appendices present the motion equations and the math-
ematical reason of the choice of the free energy form near a
critical point of a binary mixture of fluids obtained by a new
method issued from differential geometry.

2. Isothermal motion of a binary fluid mixture near
a critical point

We study a mixture of two fluids by a mechanical process. No
assumption has to be done about composition or miscibility. The
motion of a two-fluid continuum can be represented with two
surjective differentiable mappings (see Fig. 1) [1,15,16,22]:

z-X1 ¼F1ðzÞ and z-X2 ¼F2ðzÞ,

where subscripts 1 and 2 are associated with each constituent
of the mixture. Term z¼ ðt,xÞ denotes Euler variables in space-
time W and terms X1 and X2 denote the Lagrange variables of
constituents in reference spaces Do1 and Do2 respectively.

In the pure mechanical case, the Lagrangian density of the
mixture is

L¼ 1
2 r1v2

1þ
1
2r2v2

2�e�r1O1�r2O2,

where v1 and v2 denote the velocity vectors of each constituent,
r1 and r2 are the densities, O1 and O2 are the external force
potentials depending only on z¼ ðt,xÞ and e is the volume energy
[2,14]. The expression of the Lagrangian is in a general form. In
fact dissipative phenomena imply that v1 is almost equal to v2; it
is the reason why we do not take account of some kinetic energy
associated with the relative velocity of the components which is
of a smaller order (at least of order 2) and will be negligible in
travelling wave behaviour [5,25,28]. Because of the interaction
between the constituents, the volume energy e is not the sum of
the energies of each constituent of the mixture, like for Euler

mixtures of fluids. The mixture is assumed not to be chemically

reacting. Conservations of masses require

ri det Fi ¼ roiðXiÞ, ð1Þ

where subscript i belongs to {1,2}. At t fixed, the deformation
gradient @xi=@Xi associated with Fi is denoted by Fi and roi is the
reference specific mass in Doi.

Eq. (1) is equivalent to the Eulerian form:

@ri

@t
þdivrivi ¼ 0: ð2Þ

The volume energy e is given by the behaviour of the mixture
[7,11,12]. In our mechanical case, for an energy depending on
gradients of densities, the volume energy is

e¼ eðr1,r2,grad r1,grad r2Þ:

The potential

mi ¼
@e

@ri

�
@

@xg

@e

@ri,g

 !

defines the specific free enthalpy or chemical potential of the
constituent i of the mixture [16]. Subscript g corresponds to the
spatial derivatives associated with gradient terms. Usually, sum-
mation is made on repeated subscript g. In practice, we consider a
quadratic form with constant coefficients C1,C2,D

Q ¼ C1ðgrad r1Þ
2
þ2D grad r1 grad r2þC2ðgrad r2Þ

2,

such that

e¼ goðr1,r2Þþ
1
2Q , ð3Þ

where goðr1,r2Þ is the value of the volume energy of the homo-
geneous bulks.

To obtain the equations of motions, we use a variational principle
whose original feature is to choice variations in reference spaces
(Fig. 1). They are associated with a two-parameter family of virtual
motions of the mixture (see Appendix A).

The equation of the motion of each constituent of the mixture
writes [19] and the references therein:

aiþgradðmiþOiÞ ¼ 0, i¼ f1;2g, ð4Þ

where ai, denotes the acceleration of the component i (i¼1,2).
In applications, the motions are supposed to be isothermal
(T denotes the common temperature value of the two compo-
nents) and correspond to strong heat exchange between compo-
nents. In thermodynamics, this case corresponds to a function
goðr1,r2Þ as the volume free energy of the homogeneous mixture
at temperature T.

In our model, the equations of motion (4) yield

a1 ¼ gradfC1Dr1þDDr2�go,r1
g,

a2 ¼ gradfDDr1þC2Dr2�go,r2
g:

(
ð5Þ

Taking Eq. (2) into account, we can note that the two equations of
system (4) are equivalent to the system:

@rivi

@t
þdivðrivi � viÞþgradðrimiÞ ¼ mi grad ri, i¼ f1;2g

for which equations of components are not in divergence form,
but the summation of the two equations and the fact thatP2

i ¼ 1 mi grad ri ¼ grad e allow to obtain the total motion of the
mixture in divergence form [16,19]. Therefore, while the global
momentum equation represents a balance law, individually, the
equations of system (2) do not.
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Fig. 1. General representation of a two-fluid continuum motion.

H. Gouin et al. / International Journal of Non-Linear Mechanics 47 (2012) 77–8478



Download English Version:

https://daneshyari.com/en/article/783890

Download Persian Version:

https://daneshyari.com/article/783890

Daneshyari.com

https://daneshyari.com/en/article/783890
https://daneshyari.com/article/783890
https://daneshyari.com

