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a b s t r a c t

The calculation of intermolecular dispersion energies within a time-dependent density-functional theory
framework (TDDFT) is reviewed. While the commonly used route to compute dispersion energies is to
employ the Casimir-Polder integral transform and thereby describing the dispersion energy as a func-
tional of the response functions of the monomers, this alternative approach leads to a particularly simple
form for the long-range interaction between two subsystems in terms of the TDDFT eigenvectors and
excitation energies. We present two different schemes to reduce the high computational cost for calcu-
lating the excitation energies and vectors of the monomers to be used to compute the dispersion energies
via the TDDFT method. This is achieved by a decoupling of the occupied-virtual orbital product basis
functions which are associated with single-particle excitations belonging to large and small oscillator
strengths. It will be shown that this approach can lead to large speedups of 90% and more compared
to a full diagonalisation of the hessian, while the fully coupled dispersion energies can be reproduced
with a reasonable accuracy. We also investigate the role of the dispersion energy for the description of
r- and p-stacking interactions and discuss various dispersion energy approximations, including the D3
model by Grimme.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

The dispersion energy is that part of the intermolecular interac-
tion energy which can not be described in terms of the permanent
or induced multipoles of the interacting molecules. Unlike the elec-
trostatic interaction energy, the (second-order contribution to the)
dispersion energy is always attractive, yet is more short-ranged
than interactions between permanent charges, dipoles and/or
quadrupoles. Another difference between the (two-body) disper-
sion interaction and the first order Coulomb interactions is that
dispersion forces are rather isotrope, i.e., they do not depend much
on the orientation of the monomers but only on the distances of
their electron distributions. Because of this, the dispersion interac-
tion can typically be well approximated by simple pairwise atom-
atom force field expressions.

Such models of the dispersion energy are commonly in use in
intermolecular force fields [1], semiempirical quantum chemistry
methods [2,3] as well as within the framework of density-
functional theory (DFT) methods to correct their deficiency of the
description of long-range electron correlation effects [4–12] (see

also the review by Riley et al. [13]). In all cases, the dispersion
energy is described by its long-range multipole-expanded form,
using suitable molecular or atom-atom dispersion coefficients.
For short interatomic distances the dispersion energy then needs
to be properly damped to resolve the singularity of the expanded
form of the interaction. In case of dispersion-corrected DFT meth-
ods, this damping approach also needs to be applied in order to
avoid the double-counting of electron correlation effects at short
distances.

Early dispersion-correction models to DFT methods have used a
fixed parametrisation for the different atom-atom coefficients of
the long-range expanded form [4–6], thereby neglecting the expli-
cit chemical environment of the atoms, characterised, e.g., by their
hybridisation states. Because of this, in the recent years a number
of different advanced models for the dispersion energy have been
developed which correct this deficiency. The perhaps most widely
used method to date is the D3 model by Grimme et al. [11]. Here,
the atom-atom dispersion coefficients have been parametrised
against polarisabilities from time-dependent density functional
theory calculations for various hydride compounds of the atoms
to reflect theirs different hybridisation states. More advanced dis-
persion corrections also incorporate atomic or molecular densities
to improve the description of the classical approaches [7,8,10,9,12],
e.g., the exchange-hole dipole moment (XDM) model by Becke and
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Johnson [7,8] or the dispersion correction by Tkatchenko and Sch-
effler that is based on scaling the dispersion coefficients of free
pairs of atoms (that are not exposed to a chemical environment)
by the ratios of the effective volume of the atoms in the molecule
over the volume of the free atom [10]. The applicability of the
Tkatchenko-Scheffler dispersion model could be extended to ionic
systems by employing an iterative Hirshfeld partitioning, see Refs.
[14,15]. Very recently, Grimme et al. have presented, too, a disper-
sion energy model which takes into account the dependence of the
dispersion coefficients on the molecular density [16]. This model,
termed as D4 correction, utilises densities which are determined
by semiempirical DFT tight-binding calculations and was shown
to improve the description of the interactions of, e.g., charged com-
plexes, see Ref. [16].

The atom-atom dispersion coefficients to be used in pairwise
dispersion models can also more rigorously be derived from exact
known expressions of the response function of the monomers. One
such approach is the local response dispersion (LRD) method by
Sato and Nakai [9]. This method uses a local approximation of
the response function developed by Dobson and Dinte [17] which
is based on a simple model of the density-density response func-
tion of the homogeneous electron gas (see also the work by Ander-
sson et al. [18]). Alternatively, approximate expressions for the
dispersion energy can also be obtained by using an Unsöld approx-
imation to the response function, see Refs. [19–21]. In Ref. [12]
this approach has been refined to derive local frequency-
dependent polarisabilities of the monomers to be employed in dis-
persion energy corrections to DFT functionals. Note that this
method, termed as weighted exchange-hole method, is also related
to the XDM method by Becke and Johnson [7,8,19–21].

There exist, however, a number of cases which cannot be
decribed by atom-pairwise dispersion energy models. Firstly, the
interaction between two atoms A and B may be screened by an
additional polarizable centre C so that the bare interaction of the
two atoms is altered. This many-body effect is described, e.g., by
the Axilrod-Teller interaction energy term that describes the inter-
action between three atoms [22]. This three-body correction term
has been evaluated, e.g., for large supramolecular complexes in
Ref. [23] and it has been found that it yields a rather small yet non-
negligible contribution to the interaction energy in these cases. A
many-body dispersion correction model has also been developed
by Tkatchenko et al. that was shown to yield strong improvements
in the description of the interaction energy of large molecular com-
plexes compared to DFT employing only an atom pairwise disper-
sion energy model [24]. This model has been further refined by
Gould et al. by employing a fractional ions scheme which was
shown to improve the description of dispersion interactions of
more difficult nanosystems [15].

The second case that can not be described by atom-pairwise
models and that, in fact, is generally difficult to model via simple
force field expressions, is the interaction between molecules that
possess a (nearly) degenerate and strongly delocalised electronic
structure [25]. In such systems the lowest excitation energy would
be almost zero, so that the density response of the molecule would
almost exclusively be described by the lowest transition. Examples
where such effects need to be taken into account are, e.g., metals or
highly conjugated p-aromatic systems like graphene or (extended)
fullerene molecules [26–29]. Note also that asymptotically the dis-
persion interaction between such systems will decay more slowly
with respect to the distance than for the interactions between
large-gap systems [26,28,30,31]. For example, the interaction
energy between two parallelly oriented graphene sheets decays
as R�3 with the distance [26].

It is clear, therefore, that an accurate description of dispersion
interactions that respects all of the aforementioned situations

can only be achieved with the aid of quantum chemical electron
correlation methods of an adequate level. Generally there exist
two different approaches to describe intermolecular interactions
with quantum chemical methods. The first one is the supermolec-
ular method in which the interaction energy is calculated by sub-
tracting the monomer energies from the dimer energy. This
method, however, does not separate the dispersion energy from
the rest of the interaction energy contributions, so that further
techniques involving orbital localisations need to be applied in
order to extract the dispersion interaction [32,33].

The second common approach to describe intermolecular inter-
actions is the symmetry-adapted perturbation theory (SAPT)
method which was developed by Jeziorski and co workers [34–
36]. Here, the interaction energy between two molecules is calcu-
lated directly as a sum of physically distinct terms, including the
dispersion energy. To take intramonomer electron correlation
effects into account, various variants of the SAPT method have
been developed that are based on different approximations of the
monomer wave functions. The most accurate SAPT approaches
describe intramonomer correlation effects by using a many-body
perturbation or coupled-cluster expansion of the wave function
[37–43]. These methods, however, exhibit a strong scaling depen-
dency on the molecular size and can only be applied to very small
dimers. Compared to this, the SAPT method based on DFT mono-
mer properties, termed DFT-SAPT method [44–52], was shown to
yield very accurate dispersion [47,48] and other interaction energy
terms [44,45] at a much lower computational cost compared to the
many-body SAPT approaches.

To achieve this high performance, density-fitting techniques are
implemented in the DFT-SAPT method with which products of two
orbital functions are reduced to a linear expansion of auxiliary
basis functions [50,51,53]. It was shown that this approach leads
to a reduction of the computational cost of the dispersion energy
by two orders of magnitude compared to the canonical method

that would require steps in the calculation which scale as N 6 with
the molecular size N . The dispersion energy can then be calculated
using the Casimir-Polder integral transform [54] (Eq. (1)) using
monomer response functions represented in the reduced auxiliary
basis set [48,50,55]. The latter can easily be computed at given
imaginary frequencies by solving the Dyson equation to the
density-density response propagator [55,56]. However, the
response function of a molecular system can alternatively also be
computed by a sum-over-states expression employing the excita-
tion energies and vectors of the system [57–59] (Eq. (3)). While
this would require the knowledge of the complete eigenvalue
and -vector spectrum of the electronic hessian, the formula for cal-
culating the dispersion energy can then be transformed into a very
simple and interpretable form [59,47], see below.

In this work we will review this alternative approach for calcu-
lating dispersion interaction energies employing the excitation
energies and vectors of the monomers computed using time-
dependent density functional theory (TDDFT) methods. We then
introduce computational schemes which allow to drastically
reduce the computational cost. This is achieved by a decoupling
of basis functions that represent the hessian matrix using the
uncoupled oscillator strengths associated with the occupied-
virtual orbital products as a criteria. In the second part of this work
we will then apply the methods for analysing the dispersion inter-
actions between parallel and linear shaped alkane and alkene
dimers. It will be shown that the commonly used uncoupled or
single-pole approximations are unable to reproduce the p-p
stacking interactions of extended conjugated systems due to the
breakdown of the second-order expansion of the response function
for low-gap systems. Compared to this, it is shown that the D3 dis-
persion model by Grimme [11] can describe the dependence of the
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