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a b s t r a c t

We study the effect of harmonic oscillations during the steady rolling of a cylinder on a plane in partial

slip contact conditions in the limit of small oscillations. The solution is an extension of that given in

Barber et al. [1] for infinitely large coefficient of friction. Here, the effect of varying normal load and

hence contact area is investigated in detail by analyzing the first order variation of the tangential force

and the corresponding relative displacements.

In particular, the solution is given in terms of an explicit length scale d in the Flamant solution used

as a Green function. Appropriate choice of values of d allows to treat both two-dimensional problems

and three-dimensional ones having elliptical contact area sufficiently elongated in the direction of the

rotation axis.

Also, this analysis can be used as starting point for corrugation calculations in railway tracks, where

oscillations in time of the normal forces can result in non-uniform wear and hence in amplification of

the corrugation.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The rolling of cylinders is a classical problem in mechanics. In
practice however the cross-section of the roller is never perfectly
circular and equivalently, the countersurface on which the motion
occurs is never perfectly flat. Here, we shall look at this problem
by perturbing a classical solution due to Carter [2] which deals
with the traction (or braking) of a cylindrical wheel. His investi-
gation was originally intended to shed light on rail–wheel wear in
locomotives but can be applied in other cases, e.g. rolling at the
nano-scale [3], to roll-to-roll printing even in modern nanoim-
print lithography [4]. However we shall primarily look at the case
of rolling for the classical tractive wheel application.

Recently, an elasticity solution for the two-dimensional pro-
blem of a rolling cylinder with applied loads having small
sinusoidal oscillations superposed to a mean value has been
proposed by Barber and Ciavarella [5], Barber et al. [1] and
Afferrante [6]. In the first two papers, the full-stick approxima-
tion, which corresponds to assume infinitely large friction coeffi-
cient, has been adopted to simplify the problem. In particular, in

Barber and Ciavarella [5], the transient effects of rolling has been
analytically examined using a perturbation technique on the
Winkler model in which the surface displacements of the con-
tacting bodies are assumed simply proportional to the local

tractions. In Afferrante [6], the Winkler model has been extended
to finite values of friction coefficient, implying a finite slip zone in
the contact region.

The linear perturbation analysis, as explained in Barber et al.
[1], implies that the mean contact area semi-width a0 in the
direction of rolling needs to be sufficiently smaller than the
wavelength l of the initial perturbation. In fact Kalker [7,8] has
shown that the time for which the system maintains its ‘memory’
is equal to the time necessary for a point to move from the
leading edge to the trailing edge of the contact area.

One important application of models based on perturbation
techniques is in the context of studies of corrugation, where there
is a sinusoidal forcing in the form of a corrugated profile over
which the rolling takes place, and hence there are oscillations of
the displacement and the rolling velocity (creepage). Other
authors [9–13] have developed similar approaches to study the
phenomenon of the corrugation in railway tracks, which results
from an unstable interaction between the dynamics of the vehicle
and track and the wear mechanism.

Here, we aim to extend the perturbation analysis to a two-
dimensional continuum model of a rolling cylinder on a plane
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with finite friction coefficient and for which Carter [2] gave the
celebrated classic solution of the steady-state problem. In parti-
cular the contact problem, which presents significant mathema-
tical difficulties, is solved in terms of the frequency-dependent
receptances defining the tangential forces and displacements.

2. Contact problem

The model under investigation is that developed by Barber et al.
[1] and shown in Fig. 1, in which a finite region of slip is present in
the contact area as a result of the finite value of the friction
coefficient. The vehicle is moving with speed V so that the rolling
cylinder is rotating with angular speed O. If we superpose a rigid
speed V to the system, the cylinder rests and the rail moves with
speed V. The torque M opposes the rotation because we are assuming
the vehicle is braking. It can be shown that the case of an accelerating
vehicle leads to identical expressions for the receptances.

A procedure similar to the usual solution of Cattaneo and
Carter’s problems, superposing a corrective term to the full sliding
solution, is adopted, differently from Barber et al. [1] where a
procedure similar to Mossakowski method of integrating flat
punch solutions was used—obtaining an Abel equation instead
of a standard Cauchy integral, which we develop here.

We concentrate the elastic deformation in the wheel for which
we shall use an equivalent modulus and shall treat the rail as
rigid. The velocity at a point on the circumference of the wheel
can be written as the sum of three contributions:

vx ¼ 1þ
@ux

@x

� �
OðtÞRþ

@ux

@t
¼OðtÞRþV

@ux

@x
þ
@ux

@t
ð1Þ

(i) the ‘rigid’ velocity term OðtÞR; (ii) the steady-state tensile
strain @ux=@x which increases the circumference of the wheel and
hence the velocity OðtÞR; (iii) the ‘elastic’ contribution term @ux=@t

due to the variation in time of the elastic displacement. Notice we
have replaced OðtÞR by V in the second term of Eq. (1) since the
difference is second order.

We assume linear perturbation for the rotational speed and
tangential displacements (now limited to the stick area):

OðtÞ ¼O0þO1 expðıotÞ; uxðx,tÞ ¼ u0ðxÞþu1ðxÞ expðıotÞ ð2Þ

as well as loads

P¼ P0þP1 expðıotÞ; Q ¼Q0þQ1 expðıotÞ ð3Þ

which also implies sinusoidal variation of the contact area:

a¼ a0þa1 expðıotÞ; a0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
4P0R

pEn

r
; a1 ¼

@a

@P
P1 ¼

a0P1

2P0
ð4Þ

and, in the steady-state, we also have Carter’s solution (see [14,
Section 12.8]), involving the superposition of two elliptical terms
of shear, the full sliding one proportional to the pressure, and a
corrective term in the stick region at the leading edge of the
contact area:

b¼ b0þb1 expðıotÞ; b0 ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Q0=fP0

q
ð5Þ

being b the semi-width of the stick zone. Notice we are assuming
uncoupled pressure and shear equations. Coupling is generally
neglected since the material in the wheel and rail is elastically
nearly identical, and half-plane elasticity is used.

In the stick area the displacements in the tangential direction
are as in Section 2 of Barber et al. [1]:

u0ðxÞ ¼ 1�
O0R

V

� �
xþC0 ð6Þ

u1ðxÞ ¼ C1 exp �
ıox

V

� �
þ

ıO1R

o ð7Þ

where C0 and C1 are constants. We search the solution as a
correction qn in the stick region (c,a) of the full slip solution q¼ fp

everywhere:

qðxÞ ¼ fpðxÞ�qnðxÞ for x� ðc,aÞ ð8Þ

where c itself is assumed of the form c¼ c0þc1 expðiotÞ.
The correction must be chosen so as to adjust the displace-

ments in the stick region (c,a) to Eqs. (6) and (7) and the
corrective shear traction is itself assumed of the form of a
perturbation of Carter’s solution corrective term qn

0ðxÞ:

qnðxÞ ¼ qn

0ðxÞþqn

1ðxÞ expðiotÞ ð9Þ

We start from the usual integral [14, Eq. 12.62]1
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where the extremes of integration are varying in time, and En is
the composite modulus:

1

En
¼
ð1�n2

1Þ

E1
þ
ð1�n2

2Þ

E2
ð11Þ

Of the three integrals, the first two are simple since we know the
elliptical form of the integrands [14, par. 12.8.2] which however
has p conventionally negative):

pðxÞ ¼
En

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�x2

p
; qn

0ðx
nÞ ¼

fEn

2R
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p
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where we have changed variables to stay in the centre of stick
zone xc

xn ¼ x�xc; xc ¼
aþc

2
; b¼

a�c

2
ð13Þ

The integrals are
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Fig. 1. Model under investigation: rolling cylinder on a rail. 1 For the ref system see Barber [14, Fig. 12.3].
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