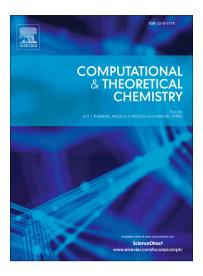
Accepted Manuscript

Structural and energetic quantum chemical investigations into how the bioactive thiazolidinedione and rhodanine scaffolds interact with cytosine to form part of DNA

Behzad Khalili


PII: S2210-271X(17)30521-2

DOI: https://doi.org/10.1016/j.comptc.2017.12.012

Reference: COMPTC 2693

To appear in: Computational & Theoretical Chemistry

Received Date: 16 November 2017 Revised Date: 23 December 2017 Accepted Date: 28 December 2017

Please cite this article as: B. Khalili, Structural and energetic quantum chemical investigations into how the bioactive thiazolidinedione and rhodanine scaffolds interact with cytosine to form part of DNA, *Computational & Theoretical Chemistry* (2017), doi: https://doi.org/10.1016/j.comptc.2017.12.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Structural and energetic quantum chemical investigations into how the bioactive thiazolidinedione and rhodanine scaffolds interact with cytosine to form part of

DNA

Behzad Khalili*

Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335–1914, Rasht,

Iran.

*Corresponding author: <u>b.khalili@guilan.ac.ir</u>

Abstract

The interaction within biologically active complex configurations composed of thiazolidinedione cytosine (TC) and rhodanine-cytosine (RC) have been fully investigated using B3LYP and M062X methods in conjunction with various basis sets, including 6-311++G(d,p), 6-311++G(2d,2p), 6-311++G(df,pd) and AUG-cc-pVDZ. Dispersion corrections to interaction energies using M06-2X-GD3 and double hybrid density functionals (B2PLYP-GD2, B2PLYP-GD3 and mPW2PLYP-GD2) have also been taken into account. The results showed that the interaction energies, including long range dispersion corrections obtained using double hybrid density functionals, are about 1 - 2.5 kcal/mol higher than uncorrected ones. Various combinations of all possible sites around the monomers which could lead to formation of stable complex configurations were considered, and then six double hydrogen bonded interactions which are formed in a cyclic pattern were further investigated for both complex configurations between cytosine-thiazolidinedione and cytosine-rhodanine. The intermolecular hydrogen bonds which are involved in forming of cyclic interaction patterns are of NH---O(N) and CH---O(N) types.

The TCS'2S1 and RCS'2S1 complex configurations were found to have the largest interaction energies within all the complex configurations studied for cytosine-thiazolidinedione and cytosine-

Download English Version:

https://daneshyari.com/en/article/7839028

Download Persian Version:

https://daneshyari.com/article/7839028

<u>Daneshyari.com</u>