## Accepted Manuscript

Title: Excitonic effects in the K and  $L_{2,3}$  edges spectra of bulk and monolayer black phosphorus from first-principles

Authors: Ahmad Abdolmaleki, Mehrdad Dadsetani

PII: S0368-2048(17)30145-7

DOI: https://doi.org/10.1016/j.elspec.2017.12.001

Reference: ELSPEC 46719

To appear in: Journal of Electron Spectroscopy and Related Phenomena

Received date: 1-7-2017 Revised date: 11-11-2017 Accepted date: 5-12-2017

Please cite this article as: Ahmad Abdolmaleki, Mehrdad Dadsetani, Excitonic effects in the K and L2,3 edges spectra of bulk and monolayer black phosphorus from first-principles, Journal of Electron Spectroscopy and Related Phenomena https://doi.org/10.1016/j.elspec.2017.12.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



ACCEPTED MANUSCRIPT

Excitonic effects in the K and  $L_{2,3}$  edges spectra of bulk and monolayer black

phosphorus from first-principles

Ahmad Abdolmaleki; MehrdadDadsetani\*

Department of Physics, Lorestan University, Khoramabad, Iran

\*Corresponding author;

E-mails: dadsetani.m@lu.ac.ir; dadsetani\_m@yahoo.com

Phone: +986633120192

Highlights

• Both bulk and monolayer black phosphorus show strong anisotropy in their core

absorption spectra.

• The electron-hole coupling and formation of the bound exciton have a significant effect

on the edge spectra of both bulk and monolayer BP in a way that the excitonic effects

intensely modify the oscillator strengths and the energy positions of the main spectral

structures.

Moving from bulk to monolayer, all the K and L<sub>2,3</sub> absorption spectra are red-shifted.

• Considering the excitonic effects leads to the red-shift of the core spectra.

• Decomposition of L<sub>2,3</sub> edge to L<sub>2</sub> and L<sub>3</sub> edges indicates that the contribution of the L<sub>3</sub>

edge is dominant.

• Local densities of states calculations show that p-like and d-like states of phosphorus

atoms play the main role in the electron transitions of K and L<sub>2,3</sub> edges spectra,

respectively.

**Abstract** 

In this study, the K and  $L_{2,3}$  X-ray absorption near edge structure (XANES) of bulk and monolayer

black phosphorus (BP) were calculated and compared. Calculations were performed in two

different levels of theory, with and without considering the excitonic effects. The present

calculations indicated that both bulk and monolayer BP showed strong anisotropy in their core

absorption spectra. The results demonstrated that the electron-hole coupling and formation of

1

## Download English Version:

## https://daneshyari.com/en/article/7839394

Download Persian Version:

https://daneshyari.com/article/7839394

<u>Daneshyari.com</u>