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This paper concerns the non-smooth dynamics of planar mechanical systems with isolated contact in
the presence of Coulomb friction. Following Stronge [Impact Mechanics, Cambridge University Press,
Cambridge, 2000], a set of closed-form analytic formulae is derived for a rigid-body impact law based
on an energetic coefficient of restitution and a resolution of the impact phase into distinct segments of
relative slip and stick. Thus, the impact behavior is consistent both with the assumption of Coulomb
friction and with the dissipative nature of impacts. The analysis highlights the presence of boundaries
between open regions of initial conditions and parameter values corresponding to distinct forms of the
impact law and investigates the smoothness properties of the impact law across these boundaries. It
is shown how discontinuities in the impact law are associated with discontinuity-induced bifurcations
of periodic trajectories, including non-smooth folds and persistence scenarios. Numerical analysis of an
example mechanical model is used to illustrate and validate the conclusions.

© 2009 Published by Elsevier Ltd.

1. Introduction

There has been much interest in using non-linear dynamical
systems theory to understand the complex behavior of rigid body
mechanics in the presence of non-smooth effects such as dry fric-
tion and impact (e.g., [4,25,28,34,38] and references therein). One
difficulty is that the so-called geometric theory of dynamical sys-
tems [17,22] typically assumes that the dynamics in question is suffi-
ciently smooth, whereas phenomena such as chattering of impacting
systems [5,30] and stick–slip vibrations in the presence of Coulomb
friction [35] are fundamental consequences of non-smoothness. For
non-smooth mechanical systems, even basic questions like existence
and uniqueness of solutions to model equations remains an area of
active research, and various different formalisms exist, such as slid-
ing modes [14], complementarity [18,37], hybrid systems [36] and
differential inclusions [27].

The idea that interaction with discontinuities in a dynamical sys-
tem can cause qualitative changes in the dynamics has been known
for some time, see for example the pioneering work or Feigin [13].
Recently, the present authors and their collaborators have introduced
the notion of a discontinuity-induced bifurcation as a useful paradigm
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for explaining dynamical phenomena that are unique to non-smooth
systems. In the context of the dynamics of systems undergoing fric-
tionless impact, Nordmark [29] (see also [15]) introduced the notion
of a discontinuity map that is able to analytically account for the cor-
rection to the smooth dynamics induced by a grazing incidence with
a discontinuity surface, for which he was able to show the onset
of period-adding sequences and chaotic dynamics. Later Dankowicz
and Nordmark [6] (see also [8]) generalized the concept to piecewise-
smooth continuous models with application to models of dry friction
with additional intrinsic degrees of freedom. di Bernardo et al. [12]
further derived discontinuity maps for bifurcations unique to dis-
continuous dynamics that can undergo the so-called sliding motion
(equivalent to relative stick in the present context of dry friction).
Such sliding bifurcations have been shown to underlie the onset of
stick–slip oscillations in a variety of models containing dry friction;
see Merillas et al. [26] for the most comprehensive results to date.
These techniques have also been incorporated into numerical soft-
ware for simulation and parameter continuation [20,33,41]. A com-
prehensive theory is therefore emerging, as has been summarized
in the recent book [9] and review [10], and includes application to
models that include both impact and friction, see e.g. [7,40,43].

So far, the case of impacts that involve friction has not been
systematically analyzed in the context of discontinuity-induced bi-
furcation. Note however the work by Leine et al. [24], who studied a
variant of the classical Painlevé example [31] of a falling rod, albeit
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with zero coefficient of restitution. There it was shown that passage
into the region in which the classical Painlevé paradox applies is
associated with bifurcations of branches of equilibria and periodic
orbits. Also, Lancioni et al. [23] considered simulations of a similar
model (which is also closely related to the example introduced in
Section 2.3 although with a rather different form of impact law) with
a non-zero coefficient of restitution. They found periodic and chaotic
motion with intervals of stick and chatter-type motion.

In contrast, the present paper concerns itself in generality with
bifurcations of system behavior involving phases of sustained free
flight, interrupted by isolated collisional contact events, for which
the associated impact laws are piecewise-smooth functions of sys-
tem parameters and the system state at the onset of contact. Follow-
ing the approach adopted by Stronge [38] (see also Batlle [1,2] and
references therein) in the presence of dry friction, such piecewise-
defined impact laws are shown to result from a decomposition of the
impact phase into distinct segments of slip and stick motion. Here,
the termination of the impact phase is given in terms of the energetic
coefficient of restitution [38]. Unlike impact laws based on kinematic
or kinetic coefficients of restitution, this approach is guaranteed
to lead to dissipative collisions in all cases (see the discussion in
Section 6 for more details).

The key point of the paper is that discontinuity-induced bifur-
cations can occur due to the inherent non-smoothness of the im-
pact law across well-defined boundaries associated with changes in
the sequence of stick and slip segments during the impact phase.
As shown in Section 5, such changes result in at-most piecewise-
smooth Poincaré mappings on neighborhoods of degenerate periodic
trajectories. Specifically, mappings with a discontinuity in the first
derivative are known to be associated with a catastrophic loss of sta-
ble motion and sudden jumps between different kinds of attractor,
see [9,10,13] and Figs. 6 and 7.

The paper is organized as follows. Section 2 reviews the
Lagrangian framework for impulsive contact at isolated points on
a rigid-body mechanism and illustrates the formalism for an ex-
ample system. A collection of impact mappings relating incoming
and outgoing relative velocities are derived in Section 3. Bound-
aries between open regions of initial conditions and parameter
values corresponding to distinct forms of the impact mappings are
enumerated in Section 4 as are the smoothness properties of the
corresponding impact law across these boundaries. Section 5 goes
on to study the different kinds of discontinuity-induced bifurca-
tions that arise from the various degrees of non-smoothness in the
impact law, and to provide support for these conclusions using nu-
merical analysis of the example mechanism. The paper ends with a
discussion that puts the results into the context of previous work
and provides an outlook to subsequent work.

2. Mechanical model

2.1. A Lagrangian formulation

Consider a multibody mechanism whose configuration relative to
an inertial reference frame may be described in terms of a column
matrix q of generalized coordinates and (possibly) the time coordi-
nate t. Its dynamics are then governed by Lagrange's equations

d
dt

(
�q̇T

)
− �qT = F, (1)

where the components of the row matrices �qT and �q̇T are the par-
tial derivatives of the kinetic energy Twith respect to the generalized
coordinates and the generalized velocities, respectively, and where
F denotes a row matrix of generalized forces.

Suppose that contact occurs between a point P on the multibody
mechanism and a rigid element in its environment. Throughout the

duration of contact, let F = Fc + Fa, where Fc represents the general-
ized forces associated with contact interactions and Fa represents all
other generalized forces acting on the mechanism. Denote by x(q, t)
the transformation from the generalized coordinates to the column
matrix of Cartesian coordinates of the point P relative to the inertial
reference frame. It follows that

Fc = � · �qx (2)

for some row matrix �.
There exists a positive definite, symmetric matrix M, whose en-

tries are functions of q and t, such that

T = 1
2 q̇

T · M · q̇ + · · · ,

where the omitted terms are at most linear in the column matrix of
generalized velocities q̇. From (1) and (2) it follows that

q̈ = M−1 · (�qx)
T · �T + · · · , (3)

where the omitted terms are independent of � and are a function of
Fa, q, q̇, and t only. Finally, denote by v= �qx · q̇+ �tx the velocity of
the point P relative to the inertial frame. In terms of the symmetric
matrix

m−1 = �qx · M−1 · (�qx)
T , (4)

it then follows that

v̇ = m−1 · �T + · · · , (5)

where the omitted terms are independent of � and are a function of
Fa, q, q̇, and t only.

In the case of motion constrained to a plane,

�qx =
(
cT
cN

)
, v =

(
vT
vN

)
, � = (

�T ,�N
)
,

where the subscripts T and N refer to components tangential and
normal to the common tangent direction at P, respectively. Suppose
that �qx has full row rank (which would not be the case for the model
considered in [23,24] at points where �= ±�/2). From (4) it follows
that

m−1 =
(
A B
B C

)

is positive definite, i.e., that

A>0, C>0, AC − B2>0. (6)

The formulation (1), (2) allows for several different modes of sus-
tained motion on open non-zero intervals of time. Let xN be a co-
ordinate representing the normal distance between P and the rigid
element, such that sustained free motion (with � = 0) occurs when-
ever xN >0 for such a time interval. Assume that normal contact in-
teractions acting at P are compressive, i.e., that �N �0 and that �N =0
when there is no contact at P. Furthermore, suppose that the simple
Amonton–Coulomb friction law

|�T | ���N (7)

applies at P for some non-negative physical constant �, representing
a coefficient of friction. Sustained contact then occurs on intervals for
which xN ≡ 0 and �N >0. In particular, we distinguish between sus-
tained stick where, in addition to (7), the relative velocity between
P and the instantaneous point of contact on the rigid element van-
ishes; and sustained slip, where equality occurs in (7). This work
shall not consider the dynamics of sustained contact, but shall in-
stead treat impulsive contact, or impact, which occurs at isolated
points of time separating open intervals of free flight.
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