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The steady MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stag-
nation point with magnetic field has been investigated under the assumption that the fluid obeys the
upper-convected Maxwell (UCM) model. Boundary layer theory is used to simplify the equations of mo-
tion, induced magnetic field and energy which results in three coupled non-linear ordinary differential
equations which are well-posed. These equations have been solved by using finite difference method.
The results indicate the reduction in the surface velocity gradient, surface heat transfer and displacement
thickness with the increase in the elasticity number. These trends are opposite to those reported in the
literature for a second-grade fluid. The surface velocity gradient and heat transfer are enhanced by the
magnetic and buoyancy parameters. The surface heat transfer increases with the Prandtl number, but
the surface velocity gradient decreases.

© 2009 Published by Elsevier Ltd.

1. Introduction

During the past century, many engineering problems of fluid me-
chanics have been solved by using the boundary-layer theory and the
results compare well with the experimental observations for New-
tonian fluids [1]. An extension of the boundary layer theory to non-
Newtonian fluids is found to be rather difficult [2–4]. This difficulty is
caused by the diversity of non-Newtonian fluids in their constitutive
behaviour and simultaneous viscous and elastic properties. Conse-
quently, most studies on non-Newtonian boundary layers have used
simple rheological models such that these two effects can be taken
into account separately. In spite of the deficiency of current bound-
ary layer theories for viscoelastic fluids, the studies made using sim-
ple rheological models for viscoelastic fluid show some interesting
behaviour [2,5,6] which is not observed for Newtonian fluids.

Some non-Newtonian fluids such as nuclear fuel slurries, liquid
metals, mercury amalgams, biological fluids, paper coating, plastic
extrusions, lubrication oils and greases have applications in many
areas in the presence as well as in the absence of the magnetic field.

Beard andWalters [7] used a regular perturbation technique (with
elastic number �* as a perturbation parameter) to study the boundary
layer flow of viscoelastic fluids in the stagnation-point region of
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a two-dimensional body. They found that the wall shear stress
increases with the fluid's elasticity and the velocity inside the
boundary layer exceeds that outside the boundary layer. The studies
by Teipel [8], Garg and Rajagopal [9], Pakdemirli and Suhubi [10]
and Ariel [11] have shown that the regular perturbation technique
may not give satisfactory results for viscoelastic fluids. Also Garg
and Rajagopal [9] have pointed out that the sign adopted by Beard
and Walters [7] (and many others) for the elastic number should
be reversed for the second grade model to comply with thermo-
dynamic constraints [12,13]. The above studies indicate that the
use of second-grade model is questionable, since it is good only
for slow flows with small levels of elasticity. However, in many
practical cases the elasticity number is quite large [14]. There-
fore, it is better to use more realistic constitutive equations such
as Maxwell, Oldroyed-B, Phan-Thien Tanner and Giesukus [15] to
study stagnation-point flows of viscoelastic fluids. Bhatnagar et al.
[16] employed Oldroyd-B model to study the elastic bound-
ary layer formed above stretching sheets, whereas Sadeghy and
Sharifi [17] and Sadeghy et al. [18] studied Blasius and Sakiadis
flows of second-grade and upper-convected Maxwell models,
respectively, and observed large difference between their predic-
tions of wall shear and boundary layer thickness. Renardy [19] and
Hagen and Renardy [20] presented a general formulation for the
boundary-layer flows of Maxwell, Phan-Thien Tanner and Giesukus
models and showed that the deviation from Newtonian (or inelas-
tic) behaviour would be more significant if the fluid obeyed the
upper-convected Maxwell model. Phan-Thien [21] has obtained
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exact solutions to the plane and axi-symmetric stagnation flows of
a Maxwellian fluid with inertia without using the boundary layer
approximations. Recently, Sadeghy et al. [22] have considered the
two-dimensional stagnation-point flow of viscoelastic fluids using
upper-convected Maxwell (UCM) model. The equations of motion
are simplified using boundary layer theory which yields a single
non-linear third-order ordinary differential equation. They solved
this equation by spectral method and found that the boundary layer
thickness increases and the wall shear stress decreases as the elastic
number increases. Hayat and Sajid [23] have extended the analysis
of Sadeghy et al. [18] to include the effect of the magnetic field. The
dimensionless equation governing the flow problemwas analytically
solved by homotopy analysis method. Also, Rao and Rajagopal [24]
have given a new interpretation of the classical Maxwell model. They
have shown that the upper-convected Maxwell (UCM) model can
be obtained from the standard KBKZ model. The stored energy that
leads to the UCM model is similar to that for a neo-Hookean solid
integrated over all past configurations, but weighted by an expo-
nentially decaying function. The UCM model can also be considered
as an approximation of a generalized Maxwell model in the limit of
small elastic deformations.

The studies reported above deal with flow problem only. The
heat transfer problem of a Maxwellian fluid is also important. It
is interesting to know the effect of the elasticity of the fluid on
the heat transfer rate. It is known that the magnetic field enhances
the velocity gradient and heat transfer rate at the surface due to the
increase in the Lorentz force. If the temperature difference between
the body and the fluid is large, the effect of the buoyancy force is also
significant. Hence, the simultaneous effects of elasticity of the fluid,
magnetic field and buoyancy force (assisting and opposing flows)
on the two-dimensional stagnation flow is an interesting problem,
since the heat transfer rate is maximum at the stagnation point.

In this paper, the steady mixed convection flow of viscoelastic
fluids which obey the upper-convected Maxwell (UCM) model in
the stagnation-point region of a two-dimensional body with applied
magnetic field is studied. Both heated and cooled isothermal surfaces
have been considered to study the effects of aiding and opposing
buoyancy flows. Boundary layer theory is applied to simplify the
equations of fluid motion, induced magnetic field and energy. By
appropriate transformations, the governing equations are reduced
to non-linear coupled ordinary differential equations which are then
solved by a finite-difference scheme. The results are compared with
those of Beard and Walters [7], Phan-Thien [21] and Sadeghy et al.
[22].

2. Problem formulation

Let us consider the steady mixed convection flow of an upper-
convected Maxwell (UCM) fluid in the stagnation region of a double-
infinite vertical surface (see Fig. 1). The magnetic field H is applied in
x-direction far away from the surface and it varies with the stream-
wise distance x (i.e., H =H0(x/L), where H0 is the value of H at x = 0
and L is the characteristic length). The fluid Reynolds number Rex
( = Ux/v, where U is the velocity at the edge of the boundary layer
and v is the kinematic viscosity) and the magnetic Reynolds num-
ber Rmx (=Ux/�∗

1, where �∗
1 is the magnetic diffusivity) are assumed

to be large enough for momentum, thermal and magnetic bound-
ary layers to have developed. The effect of the induced magnetic
field is considered here. It is assumed that the normal component
(y-component) of the induced magnetic field H2 vanishes at the wall
and the parallel component (x-component) H1 approaches its given
valueH at the edge of the boundary layer [25]. The fluid is assumed to
be electrically conducting and the surface as non-conducting. Hence,
no surface current sheet occurs. In other words, the x-component
of the induced magnetic field is continuous across the surface. This
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Fig. 1. Physical model and coordinate system.

condition is expressed by �H1/�y = 0 when y = 0 [25]. The temper-
ature at the wall and in the free stream is assumed to be constant.
The effects of viscous dissipation, Ohmic heating and Hall current
are not included in the analysis, since they are generally small in the
stagnation-point region. All the fluid properties are assumed con-
stant except the density. Under the foregoing assumptions along
with Boussinesq appxoximation the boundary layer equations based
on the conservation of mass, momentum and energy governing the
mixed convection flow can be expressed as [22,25,26]
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