
Author's Accepted Manuscript

Photoluminescence properties of Eu³⁺ doped BaF₂ nanomaterials and BaF2:3Eu/Fe3O4 nanocomposite for hyperthermia application

Nandini Kumam, Laishram Priyobarta Singh, Sri Krishna Srivastava, Nongmeithem Rajmuhon Singh

www.elsevier.com/locate/ilumin

PII: S0022-2313(17)31910-5

DOI: https://doi.org/10.1016/j.jlumin.2018.05.058

Reference: **LUMIN15640**

Journal of Luminescence To appear in:

Received date: 9 November 2017 Revised date: 13 May 2018 Accepted date: 24 May 2018

Cite this article as: Nandini Kumam, Laishram Priyobarta Singh, Sri Krishna Srivastava and Nongmeithem Rajmuhon Singh, Photoluminescence properties of Eu³⁺ doped BaF₂ nanomaterials and BaF₂:3Eu/Fe₃O₄ nanocomposite for hyperthermia application, Journal of Luminescence, https://doi.org/10.1016/j.jlumin.2018.05.058

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Photoluminescence properties of Eu^{3+} doped BaF_2 nanomaterials and BaF_2 : $3Eu/Fe_3O_4$ nanocomposite for hyperthermia application

Nandini Kumam, ^a Laishram Priyobarta Singh ^b, Sri Krishna Srivastava ^{a,c}, Nongmeithem Rajmuhon Singh ^a*

^a Department of Chemistry, Manipur University, Imphal-795003, INDIA ^bNational Institute of Technology Manipur, Imphal, Manipur, India, 795004 ^cNorth- Eastern Hill University, Shillong-793022, INDIA

ABSTRACT

Cubical crystalline 3 at.% Eu^{3+} ion doped BaF_2 nanomaterials have been successfully synthesised by ethylene glycol route. The cubical crystalline structure of BaF_2 was confirmed by XRD analysis. FTIR study shows the significant capping of nanomaterials by ethylene glycol. Microscopy study indicates the change of shape of nanoparticles from spherical to rod at higher annealing temperature (900 °C). Photoluminescence studies give the characteristic emission of Eu^{3+} at 587 ($^5D_0 \rightarrow ^7F_1$, magnetic dipole transition) and 613 nm ($^5D_0 \rightarrow ^7F_2$, electric dipole transition). The decay time of as-prepared sample is longer than 900 °C annealed samples. The CIE chromaticity coordinates diagram shows the prepared nanomaterials can be used as orange-reddish emitter. The samples were dispersed in different organic solvents and observed that emission intensity increases with increase in chain length of the solvents. The prepared $Eu_{0.03}Ba_{0.97}F_2/Fe_3O_4$ nanocomposites can achieve hyperthermia temperature (HT) at sort period. Nanocomposite generates more heat than pure Fe_3O_4 nanoparticles.

Download English Version:

https://daneshyari.com/en/article/7839643

Download Persian Version:

https://daneshyari.com/article/7839643

<u>Daneshyari.com</u>