
Author's Accepted Manuscript

Preliminary evaluation of the up-conversion emission of Y₂O₃:Er-Yb thin films prepared by a solid state photochemical deposition method

G. Cabello-Guzmán, Diego González, C. Caro-Díaz, L. Lillo-Arroyo, F. Valenzuela-Melgarejo, G. Cárdenas Triviño, G.E. Buono-Core, B. Chornik, Yosselin Huentupil

www.elsevier.com/locate/jlumin

PII: S0022-2313(18)30856-1

DOI: https://doi.org/10.1016/j.jlumin.2018.08.034

Reference: LUMIN15832

To appear in: Journal of Luminescence

Received date: 14 May 2018 Revised date: 3 August 2018 Accepted date: 6 August 2018

Cite this article as: G. Cabello-Guzmán, Diego González, C. Caro-Díaz, L. Lillo-Arroyo, F. Valenzuela-Melgarejo, G. Cárdenas Triviño, G.E. Buono-Core, B. Chornik and Yosselin Huentupil, Preliminary evaluation of the up-conversion emission of Y₂O₃:Er-Yb thin films prepared by a solid state photochemical deposition method, *Journal of Luminescence*, https://doi.org/10.1016/j.jlumin.2018.08.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Preliminary evaluation of the up-conversion emission of Y₂O₃:Er-Yb thin films prepared by a solid state photochemical deposition method

G. Cabello-Guzmán^{1*}, Diego González¹, C. Caro-Díaz¹, L. Lillo-Arroyo¹, F. Valenzuela-Melgarejo¹, G. Cárdenas Triviño², G.E. Buono-Core³, B. Chornik⁴, Yosselin Huentupil⁵

¹Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile ²Facultad de Ingeniería, DIMAD, Centro de Biomateriales y Nanotecnología, Universidad del Bío-Bío, Concepción, Chile

³Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile ⁴Deparamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8370415, Chile

⁵Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile

Abstract

 Y_2O_3 thin films doped with different concentrations of erbium ions and co-doped with 10 mol % of ytterbium were synthesized by a solid state photochemical deposition method followed by a subsequent calcination process. The photo-reactivity of the thin films was monitored by Fourier transform infrared (FT-IR) spectroscopy. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV-vis spectroscopy and photo-luminescence (PL) were employed to characterize the samples. The results reveal that Y_2O_3 :Er films under 980 nm irradiation exhibit characteristic up-conversion emissions that are focused in the green region of the spectrum; these emissions are assigned to the $(^2H_{11/2}, ^4S_{3/2}) \rightarrow ^4I_{15/2}$ transitions of the Er³⁺ ions. These emissions greatly increase in intensity with the addition of Yb³⁺ ions in the preparation of the co-doped films. This phenomenon is explained based on the efficient Yb³⁺ \rightarrow Er³⁺ energy transfer processes.

Keywords: Thin films, photochemical deposition, up-conversion emission, energy transfer.

* Corresponding author. Fax: +56 42 2463046.

E-mail address: gcabello@ubiobio.cl (G. Cabello-Guzmán).

Download English Version:

https://daneshyari.com/en/article/7839710

Download Persian Version:

https://daneshyari.com/article/7839710

<u>Daneshyari.com</u>