
Author's Accepted Manuscript

Facile synthesis of re-dispersible YVO₄:Ln³⁺ (Ln³⁺ = Dy³⁺, Eu³⁺, Sm³⁺) nanocrystals: Luminescence studies and sensing of Cu²⁺ ions

Wangkhem, Shanta Ranjoy N. Singh, N. Premananda Singh, S. Dorendrajit Singh, L. Robindro Singh

vww.elsevier.com/locate/ilumin

PII: S0022-2313(18)30359-4

https://doi.org/10.1016/j.jlumin.2018.06.064 DOI:

LUMIN15726 Reference:

To appear in: Journal of Luminescence

Received date: 23 February 2018 Revised date: 19 June 2018 Accepted date: 21 June 2018

Cite this article as: Ranjoy Wangkhem, N. Shanta Singh, N. Premananda Singh, S. Dorendrajit Singh and L. Robindro Singh, Facile synthesis of re-dispersible $YVO_4:Ln^{3+}$ ($Ln^{3+} = Dy^{3+}$, Eu^{3+} , Sm^{3+}) nanocrystals: Luminescence studies and sensing of ions, Journal of Luminescence, https://doi.org/10.1016/j.jlumin.2018.06.064

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Facile synthesis of re-dispersible YVO_4 : Ln^{3+} (Ln^{3+} = Dy^{3+} , Eu^{3+} , Sm^{3+}) nanocrystals: Luminescence studies and sensing of Cu^{2+} ions

Ranjoy Wangkhem,^a, N. Shanta Singh,^{a,*} N. Premananda Singh^b, S. Dorendrajit Singh^c, L.

Robindro Singh^d

^aDepartment of Physics, Nagaland University, Lumami-798627, India

^bDepartment of Chemistry, Manipur University, Canchipur, Imphal-795003, India

^cDepartment of Physics, Manipur University, Canchipur, Imphal-795003, India

^dDepartment of Nanotechnology, North Eastern Hill University, Shillong-793022, India

*Corresponding author. E-mail: ssnaorem@nagalanduniversity.ac.in (N.S. Singh), +919862032690

Abstract

Re-dispersible with different color emitting capable YVO₄ nanocrystals have been synthesized using facile chemical route. The nanocrystals are tunable in size by varying pH of the reaction medium. The tunability of size is confirmed from UV-visible absorption and transmission electron microscopy. This is further unambiguously established from the luminescence studies where the intensity of luminescence reduces with the decrease in particle size. This reduction is related to the presence of more surface defects and dangling bonds in smaller nanocrystals leading to substantial quenching. Steady state luminescence and its decay dynamics studies support the surface phenomenon in the luminescence quenching. These nanocrystals are readily re-dispersible in polar solvents, which can be fabricated in polymer-based films for different display applications. Further, re-dispersible YVO₄:Eu³⁺ shows the selective detection of Cu²⁺ ions through resonance energy transfer with a limit of detection $\sim 0.15 \, \mu M$.

Download English Version:

https://daneshyari.com/en/article/7839716

Download Persian Version:

https://daneshyari.com/article/7839716

<u>Daneshyari.com</u>