
Author's Accepted Manuscript

Tunable color emitting of $Ba_{1-x-y}SiO_3:xEu,yBi^{3+}$ phosphors with the self-reduction of Eu^{3+} ions calcined in air

Lingxiang Yang, Da-chuan Zhu, Shasha Liu, Jinshan Wang, Cong Zhao, Yong Pu

www.elsevier.com/locate/jlumin

PII: S0022-2313(18)30501-5

DOI: https://doi.org/10.1016/j.jlumin.2018.06.067

Reference: LUMIN15729

To appear in: Journal of Luminescence

Received date: 19 March 2018 Revised date: 5 June 2018 Accepted date: 21 June 2018

Cite this article as: Lingxiang Yang, Da-chuan Zhu, Shasha Liu, Jin-shan Wang, Cong Zhao and Yong Pu, Tunable color emitting of Ba_{1-x-y}SiO₃:xEu,yBi³⁺ phosphors with the self-reduction of Eu³⁺ ions calcined in air, *Journal of Luminescence*, https://doi.org/10.1016/j.jlumin.2018.06.067

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Tunable color emitting of Ba_{1-x-y}SiO₃:xEu,yBi³⁺ phosphors with the self-reduction of Eu³⁺ ions calcined in air

Lingxiang Yang^a, Da-chuan Zhu^a, Shasha Liu^a, Jin-shan Wang^a, Cong Zhao^b, Yong Pu^b

^aCollege of Material Science & Engineering, Sichuan University, Sichuan Chengdu, 610065, China;

^bResearch Institute for New Materials Technology, Chongqing University of Arts and Sciences, Yongchuan Chongqing 402160, China;

Abstract:

A series of Ba_{1-x}SiO₃:xEu and Ba_{0.92-y}SiO₃:0.08Eu, yBi³⁺ phosphors have been synthesized using one-step calcination of a precursor prepared by chemical co-precipitation. The self-reduction phenomenon of Eu³⁺ is observed and verified by photoluminescence (PL), excitation (PLE) spectra and X-ray photoelectron spectroscopy (XPS). Under 353 nm excitation, the Ba_{1-x-v}SiO₃:xEu,yBi³⁺ phosphors exhibit a broad band ranging from 390 nm to 560 nm with a peak centered at 499 nm originating from the 4f⁶5d → 4f⁷ transition of Eu²⁺ ions and several narrow band emissions peaked at 464 nm, 537 nm, 581 nm, 590 nm, 615nm, 660nm and 705nm can be attributed to ${}^5D_2 \rightarrow {}^7F_0$, ${}^5D_1 \rightarrow {}^7F_1$, ${}^5D_0 \rightarrow {}^7F_0$, ${}^5D_0 \rightarrow {}^7F_1$, ${}^5D_0 \rightarrow {}^7F_2$, ${}^5D_0 \rightarrow {}^7F_3$ and $^5D_0 \rightarrow ^7F_4$ transition of Eu³⁺, respectively. The self-reduction of Eu³⁺ \rightarrow Eu²⁺ in BaSiO₃:Eu calcined in air has been explained from the following aspects: the charge compensation mechanism and the structures of 3-D networks composed by SiO₄ tetrahedra, helpful for maintaining of the reduction ($Eu^{3+} \rightarrow Eu^{2+}$) at a high temperature. Co-doping Bi³⁺ ions can both enhance the emissions from Eu²⁺ and Eu³⁺ because the doped Bi³⁺ ions not only can make vacancy for Eu²⁺ but also can enhance the emitting for Eu³⁺ in BaSiO₃. Moreover, when excited by 370 nm, the CIE chromaticity

Download English Version:

https://daneshyari.com/en/article/7839763

Download Persian Version:

https://daneshyari.com/article/7839763

<u>Daneshyari.com</u>