#### Author's Accepted Manuscript

Development of  $Eu^{3+}$  doped  $Li_2O$ -BaO-GdF<sub>3</sub>-SiO<sub>2</sub> oxyfluoride glass for efficient energy transfer from Gd<sup>3+</sup> to  $Eu^{3+}$  in red emission solid state device application

I. Khan, G. Rooh, R. Rajaramakrishna, N. Sirsittipokakun, H.J. Kim, C. Wongdeeying, J. Kaewkhao



# PII: S0022-2313(18)30456-3 DOI: https://doi.org/10.1016/j.jlumin.2018.07.009 Reference: LUMIN15756

To appear in: Journal of Luminescence

Received date: 13 March 2018 Revised date: 2 July 2018 Accepted date: 4 July 2018

Cite this article as: I. Khan, G. Rooh, R. Rajaramakrishna, N. Sirsittipokakun, H.J. Kim, C. Wongdeeying and J. Kaewkhao, Development of  $Eu^{3+}$  doped Li<sub>2</sub>O-BaO-GdF<sub>3</sub>-SiO<sub>2</sub> oxyfluoride glass for efficient energy transfer from Gd<sup>3+</sup> to  $Eu^{3+}$  in red emission solid state device application, *Journal of Luminescence*, https://doi.org/10.1016/j.jlumin.2018.07.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## Development of Eu<sup>3+</sup> doped Li<sub>2</sub>O-BaO-GdF<sub>3</sub>-SiO<sub>2</sub> oxyfluoride glass for efficient energy transfer from Gd<sup>3+</sup> to Eu<sup>3+</sup> in red emission solid state device application.

I. Khan<sup>a</sup>, G. Rooh<sup>a</sup>, R. Rajaramakrishna<sup>c</sup>,N. Sirsittipokakun<sup>b,c</sup>,H.J.Kim<sup>d</sup>, C. Wongdeeying<sup>c</sup> and **J. Kaewkhao<sup>b,c</sup>** 

<sup>a</sup>Department of Physics, Faculty of science, Abdul Wali Khan University, Mardan, 23200, Pakistan <sup>b</sup>Physics program, Faculty of Science and Technology, Rajabhat University, Nakhon Pathom, 73000, Thailand <sup>c</sup>Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand <sup>d</sup>Department of Physics, Kyungpook National University, Deagu 702-701, Republic of korea

Department of Physics, Kyungpook National University, Deagu 702-701, Republic of kores correspoending email: mink110@hotmail.com

#### Abstract:

The Eu<sup>3+</sup>- doped Li<sub>2</sub>O-BaO-GdF<sub>3</sub>-SiO<sub>2</sub> glasses were fabricated by conventional melt quenching technique to study its spectroscopic and luminescence properties for lasing potential. The density and molar volume of the glass had been increased with Eu<sub>2</sub>O<sub>3</sub> concentration. An FTIR spectrum is used to study the structural properties of the developed glasses. Two intense peaks were observed in UV-Vis-NIR spectra at 2206nm ( ${}^{7}F_{6}$ ) and 2085nm ( ${}^{7}F_{1}$ ) in NIR region. Under 394nm excitation LBGFS display five regular emission peaks at (578nm)  ${}^{7}F_{0}$ , (590nm)  ${}^{7}F_{1}$ , (613nm)  ${}^{7}F_{2}$ , (651nm)  ${}^{7}F_{3}$  and (701nm)  ${}^{7}F_{4}$  from  ${}^{5}D_{0}$  state, the most intense red emission was found at 613nm. The characteristic intense red emission peak at 613 nm corresponding to the  ${}^{5}D_{0}$  $\rightarrow$ <sup>7</sup>F<sub>2</sub> transition of Eu<sup>3+</sup> ions has been observed for oxy-fluoride glass samples. Efficient energy transfer phenomena from  $Gd^{3+} \rightarrow Eu^{3+}$  were observed under 275nm excitation in these glasses. FTIR measurements reveal that these glasses show non-bridging oxygen stretching of Si-O<sup>-</sup> at ~929 cm<sup>-1</sup>. Phonon sideband spectrum confirms the phonon energy ~920 cm<sup>-1</sup> for these glasses arising from Si-O<sup>-</sup>. Increasing trend of  $I_{\rm R/O}$  with increasing concentration of Eu<sub>2</sub>O<sub>3</sub> indicates the asymmetric environment around Eu<sup>3+</sup> in LBGFS. Higher value of stimulated cross section ( $\sigma(\lambda_p)$ ) branching ratio ( $\beta_R$ ) for transition to  ${}^7F_0$  from  ${}^5D_0$  were observed for LBGFS glasses. Decay time decrease with increasing concentration of Eu<sub>2</sub>O<sub>3</sub>.

Download English Version:

### https://daneshyari.com/en/article/7839769

Download Persian Version:

https://daneshyari.com/article/7839769

Daneshyari.com