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a b s t r a c t

In this work, a porous material is represented as a composite made of an isotropic matrix and spheroidal

inclusions with zero stiffness, describing the pores. The shape of the pores ranges from flat to spherical

to fibre-like, and their orientation is assumed to obey a given probability distribution function. As an

example of straightforward physical interpretation, the isotropic case of randomly oriented voids-pores

is studied as a function of the matrix Poisson’s ratio and the porosity (void volumetric fraction). The

results are in good agreement with published experimental data on porous metals, and with previous

isotropic solutions in the literature.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the research on composite materials with inclusions, a
milestone has been set by Eshelby [4], who described the effect, in
terms of elastic strain energy, stress, and strain, of the presence of
an elastic spheroidal inclusion (i.e., a revolution ellipsoid), in an
isotropic, linear elastic, infinite matrix. The key quantity in
Eshelby’s approach is a fourth-order tensor that was called by
other authors Eshelby’s tensor, depending on the Poisson’s ratio of
the matrix and the aspect ratio of the inclusion, the ratio of the
semi-axis in the direction of the symmetry axis to the semi-axis in
the transverse plane.

The self-consistent method of Hill [7], for two-phase compo-
sites with matrix and particulate, and the heuristic method of
Budiansky [1], for several phases of isotropic inclusions of
spherical shape, give results equivalent to those of Eshelby’s
theory [4], in their respective limits of applicability.

Based on the use of Eshelby’s tensor, Walpole [18–21]
developed a homogenisation method for composites with an
isotropic matrix and N inclusion phases, each constituted by
anisotropic inclusions with a given aspect ratio and aligned in the
same direction. Mori and Tanaka [12] made use of Eshelby’s tensor
to calculate the average stress in the matrix and the average
elastic energy in metals with misfitting precipitates.

Weng [23] reformulated the Mori–Tanaka method [12] along
the lines of Walpole’s work [18–20], and showed that the two

approaches are in fact equivalent. Subsequently, Qiu and Weng
[13] used the reformulated Mori–Tanaka method to calculate the
effective elastic moduli of some cases of aligned and randomly
oriented inclusions. Weng’s group has also applied Eshelby’s
theory [4] to composites with an elastoplastic matrix and elastic
inclusions [17,14], and elastoplastic matrix with voids [15].

In a previous work [6], we generalised Walpole’s method to
the case in which the orientation of the inclusions in one of the
N inclusion families obeys a given probability distribution; this
includes the cases of randomly oriented inclusions and of aligned
inclusions as particular cases.

Here, following the idea that porous materials can be seen as a
particular case of inclusions with zero elastic stiffness, i.e., voids,
the aim is to obtain the elasticity tensor of a porous material given
the elasticity tensor of the solid matrix, and the directional
arrangement and aspect ratio of the voids. The proposed model is
constructed in steps.

First, the previously developed homogenisation procedure [6]
is extended to the case in which the orientation of each of the
N families of spheroidal inclusions obeys a probability distribu-
tion. Second, the number of inclusion families passes from
discrete (N) to a continuous infinity, parameterised by the aspect
ratio, varying from zero (flat discs) to one (spheres) to infinity
(needles-fibres). Third, the equations are specialised to the case in
which the inclusions are voids, i.e., their intrinsic elasticity tensor
vanishes identically.

The isotropic case, attained when the inclusion orientation is
random, is studied for its simplicity. The bulk modulus, the shear
modulus, and the Poisson’s ratio of the porous material are
evaluated for two sample aspect ratio probability distributions
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and for values of the matrix Poisson’s ratio between zero and 1/2
(incompressible matrix). For increasing matrix Poisson’s ratio, the
bulk and shear moduli decrease and increase, respectively. In
contrast, the choice of the aspect ratio probability distribution
does not change the results significantly. As a comparison, the
ideal case of no matrix-void interaction is also studied: the moduli
are linearly rescaled by the solid volumetric fraction, which
results in a consistent overestimation, with respect to the
proposed method.

In its isotropic version, the proposed model gives very good
agreement with the experimental results obtained by Spitzig et al.
[16], and with the predictions of the application of the models of
Hill [7] and Budiansky [1] to porous materials, which are reported
by Spitzig et al. [16].

With respect to Hill’s [7] and Budiansky’s [1] models, as well as
the earlier model by MacKenzie [11], the proposed model has the
advantage of being able to account for any material symmetry and
inclusion (in this case pore/void) orientation.

In the reminder of this section, some basics are given about the
notation and the algebra of isotropic and transversely isotropic
fourth-order tensors, along with the presentation of Walpole’s
method [20,21] for composites with aligned inclusions.

1.1. Basic notation

Since this work is developed within the framework of linear
elasticity, i.e., infinitesimal deformations, we make no distinction
between the material and the spatial pictures of Mechanics, which
are often distinguished by the use of uppercase variables for the
former, and lower case or small-caps variables for the latter.

The second-order identity tensor is denoted I, with compo-
nents Iij ¼ dij. The fourth-order identity tensor is obtained by
means of the special tensor products � and � as defined by
Curnier [3], involving the second-order identity I:

I¼ 1
2 ðI�IþI�IÞ; Iijkl ¼

1
2ðdikdjlþdildjkÞ: ð1Þ

A fourth-order tensor T is endowed with pair symmetry if its
components with respect to any basis feg3i ¼ 1 are such that
Tijkl ¼ Tjikl ¼ Tijlk ¼ Tjilk and with diagonal symmetry if Tijkl ¼ Tklij.
When a tensor possesses both symmetries, it is said to be fully
symmetric. The identity I (Eq. (1)) is a fully symmetric tensor. For
every fourth-order tensors T and Y, the ‘‘standard’’ contraction is
denoted T : Y, with ðT : YÞijkl ¼ TijpqYpqkl, and the ‘‘full’’ contrac-
tion is denoted T :: Y¼ TijklYijkl. The set of all directions in space is
described by the unit sphere S

2
¼ fmAR3 : JmJ¼ 1g.

1.2. Isotropic fourth-order tensors

Isotropy is the invariance under every rotation. The basis for
fourth-order isotropic tensors is obtained by decomposition of the
symmetric identity into

I¼KþM; ð2Þ

where

K¼ 1
3 ðI � IÞ; Kijkl ¼

1
3dijdkl; ð3aÞ

M¼ I�K; Mijkl ¼
1
2 ðdikdjlþdildjkÞ �

1
3dijdkl; ð3bÞ

are the fully symmetric spherical and deviatoric operators,
respectively (see, e.g., [21,5]), which are orthogonal (in the sense
that K :M¼M : K¼O) and idempotent (i.e., K : K¼K and
M :M¼M).

Any isotropic fully symmetric fourth-order tensor Q can be
written as the linear combination of K and M, and its components
are found by means of the contractions

QK ¼Q :: K¼ 1
3Qiijj; ð4aÞ

QM ¼ 1
5 Q ::M¼ 1

5 ðQijij �
1
3QiijjÞ: ð4bÞ

Due to the orthogonality of K and M, the product of two isotropic
tensors and the inverse of an isotropic tensor are fully decoupled
in the two components. Therefore, we have

Q : P¼ QK PKKþQMPMM; ð5aÞ

Q
�1
¼ ðQK Þ

�1KþðQMÞ
�1M: ð5bÞ

If T is any anisotropic tensor, then the contractions (4) give the
projection of T onto the isotropic subspace, which coincide with
the isotropic directional average of T [6]:

/TSK
¼T :: K¼ 1

3Tiijj; ð6aÞ

/TSM
¼ 1

5 T ::M¼ 1
5 ðTijij �

1
3TiijjÞ: ð6bÞ

1.3. Transversely isotropic fourth-order tensors

Transverse isotropy is the invariance under rotations about a
given direction, represented by the unit vector mAS

2. A fourth-
order tensor T, transversely isotropic with respect to a direction
m, can be decomposed in Walpole’s basis fBpg

6
p ¼ 1 relative to

direction m (see Appendix A for details), as

T¼ T̂
p
Bp: ð7Þ

Walpole’s components T̂
p

of T can be collected into the vector T̂ ,
sometimes called Walpole’s vector [6]. It is important to note that
a tensor T, transversely isotropic with respect to a direction m,
expressed as an explicit function of m, reads

TðmÞ ¼ T̂
p
BpðmÞ; ð8Þ

i.e., the components are independent of the direction, and the
dependence on m is entirely taken by Walpole’s basis tensors Bp.
The product Z¼T : Y of two tensors T and Y and the inverse T�1

of a tensor T are given, in Walpole’s components, by

Ẑ ¼ ðT̂
1
Ŷ

1
þ T̂

3
Ŷ

4
; T̂

2
Ŷ

2
þ T̂

4
Ŷ

3
; T̂

1
Ŷ

3
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3
Ŷ

2
; T̂

2
Ŷ

4
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4
Ŷ

1
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5
Ŷ

5
; T̂

6
Ŷ

6
Þ;

ð9aÞ
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�1
¼
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2
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1
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2
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3
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 !
:

ð9bÞ

By means of the contractions (6), it can be shown that the
isotropic projection of a transversely isotropic tensor has
components

/TSK ¼ 1
3½T̂

1
þ2T̂

2
þ

ffiffiffi
2
p

T̂
3
þ

ffiffiffi
2
p

T̂
4
�; ð10aÞ

/TSM
¼ 1

15½2T̂
1
þ T̂

2
�

ffiffiffi
2
p

T̂
3
�

ffiffiffi
2
p

T̂
4
þ6T̂

5
þ6T̂

6
�: ð10bÞ

1.4. Walpole’s homogenisation method for aligned inclusions

Walpole’s method [20] allows for the determination of the
linear elasticity tensor of a composite constituted by a matrix
(index 0) and N phases (or families) of inclusions. The matrix is
assumed to be isotropic, and the inclusions in each phase r are
assumed to be spheroids (i.e., revolution ellipsoids) aligned in a
given direction, and their material properties transversely iso-
tropic in the same direction. Under these hypotheses, the overall
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