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a b s t r a c t

The martensitic transformation with plastic deformation in polycrystal is investigated by the

elastoplastic phase-field model. The model can capture not only spatiotemporal change of martensitic

microstructure, but also plastic deformation behavior to accommodate transformation-induced stress.

In this paper, fcc-bcc martensitic transformation in Fe–Ni polycrystalline alloy is simulated in two-

dimensions. The effects of self- and plastic accommodations on the transformation kinetics and

morphology of microstructure are studied. The simulation results demonstrate that the martensite

phase nucleates near crystal defects and grows into the parent phase. The morphology of the growing

martensite phase presents a plate-like shape to minimize the elastic strain energy. The present

simulation clearly shows that stress relaxation behavior is dominant factor which characterizes the

morphology of martensite phase. The martensitic transformation only with the self-accommodation

produces fine multivariant lamellar microstructure which accommodates internal stress-field. The high

stress-field in the microstructure prevents completion of the transformation and causes formation of

retained parent phase. In the martensitic transformation with the self- and the plastic accommodations,

since the plastic deformation largely reduces the elastic strain energy, the self-accommodation driven

by reduction of the elastic strain energy is suppressed. As a result, coarse multi-variant microstructure

emerges in the grain where large amount of plastic strain is introduced. Furthermore, the parent phase

can transform into the martensite phase completely.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In many metallic and ceramic materials, martensitic transfor-
mation can be observed [1]. In particular, the martensitic
transformation in steel is one of the most important phenomenon
from an engineering viewpoint, because distribution and mor-
phology of the martensite phase in steel play a key role on
characterizing mechanical properties of the steel. However, the
morphology of martensite phase drastically changes from thin
plate, lenticular shape to lath shape depending on transformation
temperature and chemical composition [2]. Therefore, it is quite
essential for controlling the mechanical properties of steels to
predict the transformation kinetics and the morphology of
martensitic microstructure by numerical simulation.

Recently, the phase-field (PF) method has been extensively
developed as a powerful tool to predict microstructure evolution
during solidification, phase transformation and recrystallization

[3–10]. Many researchers have proposed PF models of the
martensitic transformation [11–13]. Especially, the PF model of
the martensitic transformation based on the Khachaturyan and
Shatalov theory, which is now called as the phase-field micro-
elasticity theory [14,15], is successfully applied to simulate the
evolution of polytwinned martensitic microstructure during
cubic-tetragonal [16–19], cubic-trigonal [20] martensitic trans-
formations in alloys.

As suggested in the above studies, the morphology of
martensitic microstructure is characterized by accommodation
process of transformation-induced stress. The stress-accommoda-
tion during the martensitic transformation proceeds by formation
of multivariant microstructure and plastic deformation. These
accommodation behaviors are called as the self-accommodation
and the plastic accommodation [11,21]. In the previous studies,
the formation of twinned martensitic microstructure character-
ized by the self-accommodation has been simulated. However,
to the authors knowledge, no PF model which can treat
the martensitic transformation with the plastic accommodation
has been proposed. In order to predict various morphologies
of the martensitic microstructure including lath martensite
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structure, a new PF model which is able to describe the
martensitic transformation accompanying with the plastic
accommodation should be developed.

In our previous work, we proposed the elastoplastic phase-
field model (EP-PFM) describing the martensitic transformation
with the plastic deformation [22]. And, we simulated the
evolution of the martensite phase and the plastic accommodation
behavior during the cubic-tetragonal martensitic transformation
in a single crystal.

In this study, the martensitic transformation accompanying
with the self- and the plastic accommodations in polycrystalline
materials is investigated. First, we reformulate the EP-PFM to
simulate the martensitic transformation with the plastic deforma-
tion in polycrystals. Then, the PF simulation of isothermal
fcc-bcc martensitic transformation in Fe–Ni polycrystalline alloy
is conducted. Through the simulation, the effects of the plastic
accommodation on the morphology of microstructure are studied.

2. Elastoplastic phase-field model

In our previous study [22], the EP-PFM of the martensitic
transformation in a single crystal was developed by combining the
PF model of the martensitic transformation proposed by Wang et
al. [16] with the kinetic equation of plastic strain proposed by Guo
et al. [23]. In this section, we reformulate the EP-PFM to simulate
the martensitic transformation in polycrystalline material.

To simulate the martensitic transformation using the PF
method, the total free energy of the system, G, is defined as a
sum of the chemical free energy, Gch, the gradient energy, Ggr , and
the elastic strain energy, Gel, as

G¼ GchþGgrþGel: ð1Þ

Here, by considering that the chemical free energy is invariant
with respect to any rotation and symmetry of the crystal lattice of
the parent phase, it can be formulated, using the Landau
polynomial expansion [16], as
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where fi is the order parameter that describes the continuous
distribution of the i-th orientation variant of the martensite phase.
In the cases of the fcc-bcc martensitic transformation, three
orientation variants can be produced as a result of the transfor-
mation. Hence, i¼ 1, 2 and 3 correspond to three orientational
variants of the martensite phase whose tetragonality axes are
along the three /1 0 0S directions in the parent phase.
fi ð0rfir1Þ gradually changes from fi ¼ 1 in the i-th variant
to fi ¼ 0 in the other variants of the martensite and parent phases.
Df is the magnitude of the driving force of the transformation,
which is equal to the free energy difference between the parent
and martensite phases. A, B and C are the expansion coefficients of
the Landau polynomial expansion. In this study, these constants
are defined as A¼ 0:15, B¼ 3Aþ12 and C ¼ 2Aþ12 [20].

The gradient energy, which is defined as the sum of gradient
energies due to the inhomogeneity of order parameters, is given as

Ggr ¼

Z
V

k
2

X3

i ¼ 1

jrfij
2 dV ; ð3Þ

where k is the gradient energy coefficient.
The elastic strain energy of a system including an arbitrary

mixture of the parent phase and the martensite phase is evaluated

by the micromechanical approach as [15,24]

Gel ¼

Z
V

1

2
Cijkleel

ij e
el
kl dV ; ð4Þ

where Cijkl is the elastic coefficient tensor. The elastic strain tensor,
eel

ij , is defined as the difference between the total strain tensor, ec
ij,

and the total eigen strain tensor, e0
ij, as

eel
ij ¼ e

c
ij � e

0
ij: ð5Þ

The total strain, ec
ij, is defined as the sum of the homogeneous

strain, ec
ij, and the heterogeneous strain, dec

ij, as

ec
ij ¼ e

c
ijþde

c
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The homogeneous strain, ec
ij, is a uniform macroscopic strain and

describes the macroscopic shape change of the system. When the
system is not constrained during the transformation, the homo-
geneous strain is given as

ec
ij ¼

1

V

Z
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ij dV : ð7Þ

The heterogeneous strain, dec
ij, is defined as the deviation from

the homogeneous strain and does not affect the macroscopic
deformation. Therefore, dec

ij is defined such that
R

Vde
c
ij dV ¼ 0. And,

this strain is given by solving the mechanical equilibrium
equation, sij;j ¼ 0, with the Fourier spectral method [15,25], as

dec
ij ¼
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Here, OikðnÞ is the Green function tensor inverse to OikðnÞ
�1
¼

Cijklnjnl [15,26]. k indicates the reciprocal space vector and

n¼ k=jkj is the unit vector along the k direction. ŝ0
ijðkÞ ¼

Cijklê
0
klðkÞ is the Fourier transformation of s0

ij ¼ Cijkle0
kl. Here, ê0

klðkÞ

is the Fourier transformation of the total eigen strain.
In order to simulate the martensitic transformation accom-

panying with the self-accommodation and the plastic accommo-
dation, we describe the evolutions of the transformation strain
and the plastic strain during the transformation. Therefore, the
total eigen strain, e0

ij, is defined as a sum of the transformation
strain, et

ij, and the plastic strain, ep
ij, as [23]

e0
ij ¼ e

t
ijþe

p
ij: ð9Þ

Furthermore, to describe the martensitic transformation in
polycrystalline material, global and local coordinate systems are
considered. As shown in Fig. 1, the global coordinate system, xi

(i¼ 1, 2 and 3), is set to be parallel to the three directions of the
computational domain. The local coordinate system, yi (i¼ 1, 2
and 3), are defined in each parent grain. The rotation angle
between xi axis and yi axis represents the crystal orientation of
the parent grain, y. In order to evaluate the transformation strain
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Fig. 1. Schematic illustration of global and local coordinate systems for

polycrystalline material.
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