
Author's Accepted Manuscript

Optical analysis of a novel color tunable $Ba_2Y_{(1-x)}Eu_xAlO_5$ nanophosphor in Judd-Ofelt framework for solid state lighting

Sangeeta Chahar, Mandeep Dalal, Rekha Devi, Avni Khatkar, Priti Boora, V.B. Taxak, S.P. Khatkar

www.elsevier.com/locate/jlumin

PII: S0022-2313(17)31930-0

DOI: https://doi.org/10.1016/j.jlumin.2018.03.039

Reference: LUMIN15458

To appear in: Journal of Luminescence

Received date: 13 November 2017 Revised date: 14 March 2018 Accepted date: 15 March 2018

Cite this article as: Sangeeta Chahar, Mandeep Dalal, Rekha Devi, Avni Khatkar, Priti Boora, V.B. Taxak and S.P. Khatkar, Optical analysis of a novel color tunable Ba₂Y_(1-x)Eu_xAlO₅ nanophosphor in Judd-Ofelt framework for solid state lighting, *Journal of Luminescence*, https://doi.org/10.1016/j.jlumin.2018.03.039

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Optical analysis of a novel color tunable Ba₂Y_(1-x)Eu_xAlO₅ nanophosphor in Judd-Ofelt

framework for solid state lighting

Sangeeta Chahar¹, Mandeep Dalal¹, Rekha Devi, Avni Khatkar², Priti Boora¹, V.B. Taxak¹,

S.P. Khatkar¹*

¹Department of Chemistry, Maharshi Dayanand University, Rohtak -124001, India

²Department of Electronics and Communications, MRIEM, Rohtak, India

*Corresponding Author: Tel: +919813805666

E-mail: s_khatkar@rediffmail.com

Abstract

Eu3+ doped Ba2YAlO5 nano-crystalline phosphor is synthesized for the first time using urea

assisted solution combustion approach. X-ray diffraction analysis depicts that single phased

Ba₂Y_(1-x)Eu_xAlO₅ sample obtained by post heat treatment for 4h at 1225°C crystallize in

monoclinic lattice with $P2_1/(11)$ space group. Transmission electron microscopy (TEM)

studies reveal semi-spherical shaped particles in nano dimension ranging 40-90 nm.

Photoluminescent studies elicits that this nanophosphor can be efficiently excited by NUV

light generating emission in the red region. Ba₂Y_{0.95}Eu_{0.05}AlO₅ is found to be the optimal

composition for achieving the maximum luminescence. Concentration controlled luminescent

behavior can be utilized to obtain the chromatic color tuning from blue to red region.

Luminescent centres shows cross relaxation via quadrupole-quadrupole interactions beyond 5

mol% concentration of Eu³⁺ ion leading to concentration quenching. Judd-Ofelt intensity

parameters and refractive index of host are also determined. Chromatic color tuning proclaim

the possible utilization of this nano-crystalline phosphor in NUV excited solid state lighting

devices.

Graphical abstract

1

Download English Version:

https://daneshyari.com/en/article/7840212

Download Persian Version:

https://daneshyari.com/article/7840212

<u>Daneshyari.com</u>