
Author's Accepted Manuscript

Tailoring of electroluminescence from n-ZnO/p-GaN heterojunctions

C.O. Huo, H. Zeng, P.J. Cao, S. Han, W.J. Liu, F. Jia, Y.X. Zeng, X.K. Liu, Y.M. Lu, D.L. Zhu

www.elsevier.com/locate/ilumin

PII: S0022-2313(17)31352-2

DOI: https://doi.org/10.1016/j.jlumin.2018.02.015

LUMIN15362 Reference:

To appear in: Journal of Luminescence

Received date: 2 August 2017 Revised date: 1 February 2018 Accepted date: 5 February 2018

Cite this article as: C.Q. Huo, H. Zeng, P.J. Cao, S. Han, W.J. Liu, F. Jia, Y.X. Zeng, X.K. Liu, Y.M. Lu and D.L. Zhu, Tailoring of electroluminescence from n-ZnO/p-GaN heterojunctions, Journal of Luminescence, https://doi.org/10.1016/j.jlumin.2018.02.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Tailoring of electroluminescence from n-ZnO/p-GaN heterojunctions

C.Q.Huo^{1,2,3}, H.Zeng¹, P.J.Cao¹, S.Han¹, W.J.Liu¹, F.Jia¹, Y.X.Zeng¹, X.K.Liu¹, Y.M.Lu^{1,3} * and D.L.Zhu¹*

Abstract

In this study, electroluminescence (EL) from n-ZnO/p-GaN heterojunctions is investigated and tailored. The heterojunctions were obtained by depositing high-quality ZnO films on the p-GaN subtrate through pulsed laser deposition (PLD), and the characteristics were analyzed by X-ray diffraction (XRD), photoluminescence (PL) spectra at room-temperature (RT, 300 K), current-voltage (I-V) characteristics curves, and the EL spectra. By means of the band energy theory, a simple and effective way to tailor the luminescent properties of the heterojunction was discussed. The ultra-violet (UV) emission from the n-ZnO was obtained through the improvement of the electrical properties of the films and the substrates. The visible light emissions were tailored through the transition of different defect caused color emissions. Besides, an unexpected yellow light (YL) emission caused by Ga-O interlayer was also studied.

Keywords

n-ZnO/p-GaN heterojunctions, electroluminescence, photoluminescence, interface/interfacial layer, UV emission, visible light emission

1. Introduction

The optical material ZnO has been intensively investigated due to its excellent optoelectronic properties, such as a direct wide band gap ($E_g = 3.37 \, \text{eV}$ at 300 K), and a large exciton binding energy ($\sim 60 \, \text{meV}$) which ensures an intense near-band-edge excitonic emission at room and higher temperature, since this value is 2.4 times of the room-temperature (RT) thermal energy ($k_BT = 25 \, \text{meV}$) [1]. ZnO also has high-radiation stability to wet chemical etching [2], and is very resistant to high-energy radiation [3] which makes it suitable for space applications. Etching easily in all acids and alkalis makes it possible for fabrication of small devices [1]. High

¹College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China

² College of Materials and Chemical Engineering, Hainan University, Haikou 570228, People's Republic of China

³ Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

^{*} ymlu@szu.edu.cn, 0755-26534023

^{*} deliangzhu@163.com, 0755-26535169

Download English Version:

https://daneshyari.com/en/article/7840262

Download Persian Version:

https://daneshyari.com/article/7840262

<u>Daneshyari.com</u>