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A B S T R A C T

Luminescence from an exposed sample often follows power-law decay I α t-k. I is luminescence intensity, t is time
and k is constant. Experimentally range of k is from 0.5 to 2.0. In present study we explain full experimental
range of k by considering a non rectangular potential barrier between trap and recombination centre. This study
establishes that shape of potential barrier between trap and recombination centre is one of the key factors in
explaining power-law decay of luminescence.

1. Introduction

Thermally and optically stimulated luminescence (TL and OSL) are
the phenomenon of emission of light as a result of stimulation of ma-
terial which is previously exposed to ionising radiation. In case of
thermoluminescence and optically stimulated luminescence, stimu-
lating agents are heat and light, respectively. During irradiation to io-
nising radiation, the charge carriers are produced in the material, get
trapped at defects centres, and material goes to a metastable state.
When material previously exposed to radiation is stimulated by sti-
mulating agent, the trapped charge carriers from metastable states are
excited to conduction band/valence band followed by recombination
with opposite charge carrier at recombination centres. Recombination
leads to release of energy which directly /indirectly produces lumi-
nescence. During storage of charge carrier in trap centres, phenomenon
of fading occurs. One mechanism of fading is, with time, charge carriers
tunnel through the potential barrier to the recombination centres,
which may lead to luminescence. Fading due to tunnelling of charge
carrier from ground state of the defect centre (trap) to recombination
centre is termed as anomalous fading. During the storage period of the
exposed material, luminescence light intensity decays with time but the
form of decay is not well understood. Generally the decay is observed to
follow power-law function, ∝ −I t k. Where I is the luminescence in-
tensity, t is time and k is a constant. The value of k ranges from 0.5 to
2.0 [1]. The plot of log(I) vs log(st) (note that ‘s′ is frequency factor or
attempt-to-escape frequency or pre-exponential factor, which has di-
mension of time inverse) is observed to be straight line (linear) in many
cases, however, in some cases, it was observed to follow non linear
behaviour [1]. These observations were reported for storage period
ranging from fraction of seconds to much longer periods. [1].

The study of the luminescence signal due to tunnelling is important,
particularly in dating applications, because of long storage period of
charge carriers in trap is involved, due to prolong exposure period. Due
to loss of stored charge carrier, the age of the sample determined
through luminescence technique under-estimates the true age of
sample. An age correction scheme is possible if the rate of loss of charge
carrier in the sample during the storage period is known. Various ex-
planations of fading like defect diffusion [3], radiation less transitions
[4] or localised transitions [5] were given, however, the most common
explanation for this fading (anomalous fading) is understood to be
tunnelling recombination [2].

Literature survey shows that power-law decay of luminescence has
been explained only partially [2]. Power-law decay has been explained
on the basis of tunnelling of charge carriers from trap to recombination
centre, assuming rectangular potential barrier between the two. It was
shown that different values of k are obtained for different recombina-
tion centre concentrations [2]. However, this approach could explain
only values of k ranging from 0.95 to 2.0. For low values of re-
combination centre concentration, k reaches a lower limit of 0.95.
Whereas for high value of recombination centre concentration, poor fit
of data (log (I) vs log(st)) to power law function is observed. Till date,
although work has been carried out considering rectangular potential
barrier between the trap and recombination centre, no explanation was
given for considering the same. In fact, defect centres are generally
quite complex in nature, and are expected to have complex potential
barrier shapes. So it appears rectangular potential barrier in Huntley
work [2] was considered only for simplicity. It may be noted that, be-
sides shape of potential barrier, concentration of recombination centre
[2], height and width of potential barrier, etc. may also possibly change
the value of k.
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Present study draws an impact of non rectangular potential barrier
between trap and recombination centre. It is tried to establish the fact
that shape of potential barrier can also bring in change in the value of k.
For this, for a fixed value of recombination centre concentration, full
experimental range of k values (0.5–2.0) has been generated compu-
tationally by changing shape of potential barrier between trap and re-
combination centre.

2. Mathematical formulation

In any crystalline material, at microscopic level, there are large but
periodic variations in electrostatic potential with change in location.
Various models like Kronig Penney model, Muffin Tin potential are
adopted [6,7] to explain the periodic variations in electrostatic poten-
tial in the crystalline material. These periodic variations in electrostatic
potential can be averaged and it can be stated, that macroscopically
there is a constant potential which can be fixed as reference level.
Rectangular potential barrier can be explained by considering that
defects centres (traps/recombination centre) introduce local modifica-
tions to the constant potential, mentioned above. In the simplest case, it
can be assumed that these modifications by defect centres are finite
square wells. In this way, one can explain the rectangular potential
barrier between trap and recombination centre. From literature survey
[8], it can be established that electrostatic potential close to defect
centre is different from what it is at a general location of the crystal.
There are many sources of shielded electrostatic potential close to ac-
tual defect location due to the presence of foreign atom (e.g dopant). To
address this, in the present study, a non rectangular potential barrier
(either increasing or decreasing) has been considered, which is not
totally random [9].

For mathematical modelling of the phenomena, tunnelling of charge
carriers has been modelled with a non rectangular isotropic potential
barrier between trap and recombination centre. This is explained in
Fig. 1 as region I, II and III. Where a trap is considered to be the region
I, region between trap and recombination centre is considered as tun-
nelling region (region II) and a recombination centre is modelled as
region III. Tunnelling phenomena has been presented in three dimen-
sions with isotropic potential. In the model a sphere has been con-
sidered in which recombination centres are distributed randomly
around a trap. Consequently, to determine the wave function in these
three regions, Schrödinger equation in spherical polar coordinate has

been considered. Schrödinger equation in all the three regions has the
form given in Eq. (1)
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where

Ψ r θ Φ( , , )=Wave function of charge carrier
r θ Φ( , , ) =Radial and angular coordinates

V r( ) =Potential barrier
E =Energy of charge carrier
M =mass of charge carrier
ℏ= = Plank's constant divided by 2 Π.

The spherical approximation allows us to write
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distance of the charge carrier (electron) from centre of the trap and
Y θ Φ( , )lm are spherical harmonics. Using =rR r χ( ) we can write
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In present case, V(r) is not a constant because we have proposed a
non rectangular potential barrier. Besides, it has to satisfy following
requirements (i) it should generate required (increasing and de-
creasing) potential barrier shape for different values of parameters in-
volved as shown in Fig. 2, (ii) the integration which is required to be
carried out at a later stage should be possible numerically and (iii) the
potential should not be varying very fast so that WKB (Wentzel-Kra-
mers-Brilloun) approximation could be applicable. A reasonable choice
of V(r) is therefore
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C0 is a constant whereas D0 and b are parameters. ‘r′ is radial
distance from trap centre.

Boundary conditions are χ →0 as → + ∞r 0, .
Solving Eq. (2) in the three regions we get ground state radial wave

functions as
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where k1, k3 are the wave vectors corresponding to regions I and III
respectively. In region between the trap and recombination centre, the
wave vector cannot be defined properly as the height of barrier is
function of radial distance, r, but k

ℏ
2 has dimension of wave vector for

region II. P Q LandN, , are constants.
Both transmission and reflections of wave function can take place at

a boundary between two regions. Reflections from boundary 3 of region
II and boundary 4 of region III are neglected to make the problem
simpler considering the fact that due to multiple reflections, amplitudes
of wave function would be relatively small. Further, we apply con-
tinuity of wave function and its derivatives at the boundaries 2 and 3.
Boundaries are numbered in Fig. 1.
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Fig. 1. Schematic representation of different regions: Figure indicates the three regions
(I,II and III) with wave functions in them and their boundaries (1, 2, 3 and 4). Region I is
trap and Region III is recombination centre. Potential barrier between trap and re-
combination centre, namely S1 (increasing), S2 (rectangular) and S3 (decreasing) are
indicated. Location of boundary 2 is r1 and of 3 is r2.
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