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a b s t r a c t

Sampling strategies are often central to experimental design. Choosing efficiently which data to acquire
can improve the estimation of parameters and reduce the acquisition time. This work is focused on
designing optimal sampling patterns for Nuclear Magnetic Resonance (NMR) applications, illustrated
with respect to the best estimate of the parameters characterising a lognormal distribution. Lognormal
distributions are commonly used as fitting models for distributions of spin-lattice relaxation time con-
stants, spin-spin relaxation time constants and diffusion coefficients. A method for optimising the choice
of points to be sampled is presented which is based on the Cramér–Rao Lower Bound (CRLB) theory. The
method’s capabilities are demonstrated experimentally by applying it to the problem of estimating the
emulsion droplet size distribution from a pulsed field gradient (PFG) NMR diffusion experiment. A differ-
ence of <5% is observed between the predictions of CRLB theory and the PFG NMR experimental results. It
is shown that CLRB theory is stable down to signal-to-noise ratios of �10. A sensitivity analysis for the
CRLB theory is also performed. The method of optimizing sampling patterns is easily adapted to distribu-
tions other than lognormal and to other aspects of experimental design; case studies of optimising the
sampling scheme for a fixed acquisition time and determining the potential for reduction in acquisition
time for a fixed parameter estimation accuracy are presented. The experimental acquisition time is typ-
ically reduced by a factor of 3 using the proposed method compared to a constant gradient increment
approach that would usually be used.

� 2018 Elsevier Inc. All rights reserved.

1. Introduction

All experiments are to some degree limited by the amount of
data that can be acquired. Choosing which acquired data will give
the most statistically accurate parameters has long been a central
topic in experimental design [1]. Recently, in the quest to achieve
higher resolution (e.g. temporal resolution), mathematical tech-
niques have been developed, of which the most prominent is Com-
pressed Sensing [2,3], which guarantee the accurate reconstruction
of parameters from far fewer samples than was previously possi-
ble. As the number of samples acquired decreases significantly,
the choice of which data are acquired becomes critical. The design
of optimal sampling strategies depends on the application and it
has been approached differently for example in Magnetic
Resonance Imaging (MRI) [4], Nuclear Magnetic Resonance
(NMR) spectroscopy [5], NMR relaxation time analysis [6,7], elec-
tronic spectroscopy [8], X-ray ptychography [9] and Helium Atom
Scattering [10].

This work is concerned with designing optimal sampling pat-
terns for the most accurate estimate of parameters characterising
a lognormal distribution. Lognormal distributions are ubiquitous
in science and engineering, ranging from the description of the
population distribution of organisms [11] to the size distribution
of materials produced from particle processing techniques, such
as in the food industry [12] and nanotechnology [13]. In NMR
applications, lognormal distributions have been assumed to be a
good approximation for polymer size distributions [14], molecular
aggregate length distributions [15] and reverse micelle size distri-
butions [16] obtained from pulsed field gradient (PFG) diffusion
experiments; the spin-lattice relaxation time distribution of heavy
oils obtained from fast-field cycling [17] and inversion recovery
experiments [18]; and the spin-spin relaxation time distribution
of heavy oils obtained from CPMG experiments [18,19].

A systematic, statistical method is presented for designing sam-
pling patterns when the distribution sought can be approximated
by a lognormal distribution. The developed method is based on
the Cramér–Rao Lower Bound (CRLB) theory [20]. The CRLB theory
gives the theoretical minimum uncertainty in the estimation of the
parameters of a model. This minimum uncertainty is the accuracy
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limit with which the parameters can be estimated, given the exper-
imental data. The CRLB theory has previously been used to obtain
optimal sampling patterns for mono-exponential decays in NMR
relaxation time analysis [21,22], multidimensional COSY experi-
ments [23] and diffusion-weighted MRI [24].

The proposed method is validated against PFG NMR diffusion
experiments of an emulsion of toluene in water. The accurate mea-
surement of the emulsion droplet size distribution is important in
the food, pharmaceutical and oil recovery industry, among other
areas [25]. Since its development [26], the measurement of the
emulsion droplet size distribution using PFG NMR diffusion
experiments has become an established characterisation technique
[27–29]. The emulsion droplet size distribution obtained from PFG
NMR diffusion experiments is commonly approximated to a log-
normal distribution [26,30–32]; this is supported by population
balance statistics between droplet breakage and coalescence dur-
ing emulsification [33] and by experimental results from other
characterisation techniques such as dynamic light scattering [34]
and confocal scanning laser microscopy [35].

The complete optimisation of an NMR experiment would also
require the optimisation of specific NMR acquisition parameters
and reconstruction techniques, which are separate from the
optimisation of the sampling pattern considered in this work.
The optimisation of specific NMR acquisition parameters and
reconstruction techniques for PFG NMR diffusion experiments
have been covered in detail elsewhere [24,29,36] and will not be
addressed here.

Although the sampling method strategy presented here is illus-
trated with respect to improving the accuracy of estimation of
lognormal distribution parameters, it can be easily adapted to
other types of distributions, with the most obvious extension being
distributions that can be approximated by the sum of lognormal
distributions [16,17,29]. Of particular interest could be the opti-
mization of sampling schemes for bi-exponential decays, the fitting
of which is a long-standing challenge and remains a subject of
debate [37–41]. In a related study [42], the application of CRLB the-
ory to bi-exponential decays has been validated against experi-
mental data.

The paper is structured as follows. Section 2 introduces the the-
ory behind obtaining the emulsion droplet size distribution from
PFG NMR diffusion experiments and the application of the CRLB
theory to these experiments. The experimental sampling methods
and PFG NMR setup are described in Section 3. The comparison
between the predictions of the CRLB theory and PFG NMR experi-
mental results is presented in Section 4. The limitations, sensitivity
and potential of the CRLB theory are also discussed in Section 4.

2. Theory

The structure of this Section is as follows. Section 2.1 briefly
reviews the theory behind the extraction of the emulsion droplet
size distribution from PFG NMR diffusion experiments. Section 2.2
introduces the CRLB theory in its generality, and in Section 2.3 the
CRLB theory is applied to the problem of optimizing the sampling
pattern for the PFG NMR diffusion acquisitions of emulsion droplet
size distributions.

2.1. PFG NMR diffusion of emulsion systems

The ideal NMR signal attenuation acquired from a PFG NMR dif-
fusion experiment of an unconstrained component, for a range of
pulsed field gradient amplitudes, gi (i = 1, 2, . . ., n), is described
by the Stejskal-Tanner equation [43]:

yi ¼ A exp �c2g2
i d

2D D� d
3
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where c is the gyromagnetic ratio of the NMR-active nucleus, d is
the pulsed field gradient duration, D is the diffusion time, D is the
unconstrained diffusion coefficient and A is a scaling factor.

If the component is constrained in the dispersed phase of an
emulsion and the diffusion time is such that the root mean square
distance travelled due to Brownian motion is larger than the char-
acteristic size of the droplet, the apparent diffusion coefficient is
smaller than the unconstrained diffusion coefficient, with the
apparent value depending on the droplet size. Since the emulsion
is characterized by a distribution of droplet sizes, the PFG NMR sig-
nal attenuation is a multi-exponential decay, from which the dro-
plet size distribution can be extracted. The ideal NMR signal
attenuation acquired from the dispersed phase of an emulsion with
droplet number size distribution f0(aj), has been calculated by
Murday and Cotts [44]:

yi ¼ A
Xp
j¼1

a3j f 0ðajÞRðgi; ajÞ; ð2aÞ

where aj (j = 1, 2, . . ., p) is the discretized list of droplet radii and A is
a scaling factor. The standard notation for the number size distribu-
tion, f0(aj), [45] has been used. The factor aj

3 could be combined
with f0(aj) to give the volume size distribution, f3(aj), but we choose
to focus on the number size distribution, for ease of interpretation.
In Eq. (2a):

Rðgi; ajÞ ¼ expð�2c2g2
i
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In Eqs. 2(b, c), D is the unconstrained diffusion coefficient of the
dispersed phase and ak are the solutions to the equation:

J3=2ðakajÞ ¼ akajJ5=2ðakajÞ; ð2dÞ
where Jk is the Bessel function of the first kind and of order k. As dis-
cussed in Section 1, the droplet number size distribution, f0(aj), is
typically well approximated to a lognormal distribution:

f 0ðajÞ ¼
1

ajsg
ffiffiffiffiffiffiffi
2p

p exp �ðln aj � �a0;0Þ2
2s2g

 !
; ð3Þ

where �a0,0 is the geometric mean of the droplet size distribution
and sg is the geometric standard deviation of the droplet size distri-
bution, following standard notation (the arithmetic mean of the
droplet size distribution is �a1,0 and the standard deviation of the
droplet size distribution is s). If the droplet number size distribution
is lognormal, the volume size distribution is also lognormal [45,46].
As a result, a similar analysis of what follows in the next sections
can also be applied to the volume size distribution, f3(aj).

The ideal NMR signal, therefore, depends on three parameters:
the scaling factor, A, the geometric mean, �a0,0, and the geometric
standard deviation, sg, of the lognormal droplet size distribution.
The accurate estimation of these parameters is the objective of
the PFG NMR diffusion experiment.

2.2. CRLB theory

All signals are to some degree corrupted by noise. As a result,
the acquired signal, ŷi, is composed of the ideal signal, yi, and an
unknown noise term, �i, according to:

ŷi ¼ yi þ �i ð4Þ
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