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Abstract

Multiobjective design and control optimization of composite laminated plates is presented to minimize the postbuckling dynamic response and
maximize the buckling load. The control objective aims at dissipating the postbuckling elastic energy of the laminate with the minimum possible
expenditure of control energy using a closed-loop distributed force. The layer thicknesses and fiber orientations are taken as design variables.
The objectives of the optimization problem are formulated based on a shear deformation theory including the von-Karman non-linear effect for
various cases of boundary conditions. The non-linear control problem is solved iteratively until an appropriate convergence criterion is satisfied
based on Liapunov–Bellman theory. Liapunov function is taken as a sum of positive definite functions with different degrees. Comparative
examples for three-layer symmetric and four-layer antisymmetric laminates are given for various cases of edges conditions. Graphical study is
carried out to assess the accuracy of results obtained due to the successive iterations. The influences of the boundary conditions, orthotropy
ratio, shear deformation, aspect ratio on the laminate optimal design are elucidated.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Laminated composites are being widely used in many indus-
tries, mainly because they exhibit high strength-to-weight and
stiffness-to-weight ratios, as well as, the other properties which
make them ideally suited for use in weight-sensitive structures.
One of the most significant uses of advanced composite mate-
rials occurs in the aerospace industry, and particularly, in the
construction of large space structures which are built with a
high degree of flexibility and mostly with very low natural
damping. However, serviceability and safety requirements re-
strict the allowable limits of the dynamical response to exter-
nal disturbances to specified values. This problem is commonly
known as vibration damping [1].
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Design optimization of composite structures is concerned
with the best use of the tailoring capabilities of fiber-reinforced
laminates to maximize (or minimize) a given design objective.
The vibration damping involves the damping out of the exces-
sive vibrations by means of active structural control. In many
research studies, the two techniques of the design optimization
and active control were treated as separate issues [2–6]. In the
last two decades, a great deal of interest for the interaction be-
tween these two techniques has been manifested in the liter-
ature with a view towards integrating the design optimization
and active control in a single formulation [7–12].

In many engineering applications, it is necessary to max-
imize the buckling load subjected to such design constraints
as strength, frequency, displacement, etc. The problem can be
formulated as a minimum weight design problem subjected to
buckling and other constraints. Alternatively, the laminate may
be optimized with respect to several objectives using a multi-
criteria design approach. Structures optimized with respect to
buckling strength may exhibit low postbuckling resistance [13].
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Thus, for this multiobjective optimization problem, laminates
designed with respect to one criterion will perform quite poorly
with respect to the other one [14,15]. Therefore, optimization in
the postbuckling range becomes an important design considera-
tion for laminates which may be exposed to temperature load or
compressive load or combined thermo-mechanical load higher
than the buckling load. Many investigators have used integrated
approaches to reconciling the conflicting objectives in the de-
sign and vibration control of composite structures [16–19]. Fur-
ther studies on the design and control optimization of compos-
ite laminates in the prebuckling and postbuckling ranges can
be found in [20–24].

In general, design sensitivity analysis is important to know
accurately the effects of the design variable changes on the per-
formance of composite laminates in various cases of boundary
conditions. To evaluate these sensitivities efficiently and accu-
rately, it is important to have appropriate techniques associated
with good structural models. However, most research studies
related to the design and control optimization of composite
laminates were carried out based on the classical theories for
special cases of boundary conditions. In addition, the optimiza-
tion problems of composite laminates in the prebuckling range
have been extensively studied, but relatively little attention has
been directed to such problems in the postbuckling range which
need a non-linear (large deflection) analysis.

The current work deals with a non-linear multiobjective op-
timization problem of composite laminated plates subjected to
in-plane compressive forces. The design and control objectives
are to maximize the buckling load and to minimize the post-
buckling dynamic response with minimum expenditure of con-
trol energy. The total elastic energy is taken as a measure of
the dynamic response. The fiber orientation angles and layer
thicknesses are taken as design variables. The optimization ob-
jectives are formulated based on a shear deformation theory
including the von-Karmen non-linearity [25]. The optimality
condition of Liapunov–Bellman theory [26] is used to obtain
the optimal control force and controlled buckled deflection it-
eratively until an appropriate convergence criterion is satis-
fied. For this purpose, Liapunov function is taken as a sum of
positive definite functions with different degrees. Comparative
examples are given for three-layer symmetric and four-layer
antisymmetric laminated plates with various cases of boundary
condition to show the advantages of the present optimization
approach. Also, the influences of boundary conditions, mate-
rial and geometric parameters on the optimization process are
studied.

2. Theoretical formulation and basic equations

Consider a fiber-reinforced composite laminated rectangu-
lar plate composed of N anisotropic layers bounded together
in an arbitrary lamination scheme such that each layer pos-
sesses one plane of elastic symmetry parallel to the mid-plane
of the plate. The laminate is of length a, width b, and total con-
stant thickness h; occupying the space 0�x�a, 0�y�b and
−h/2�z�h/2. The plate is subjected to in-plane compressive
forces P1 and P2, and the upper surface of the plate (z=−h/2)

is loaded by a transverse distributed force q(x, y, t) acting as a
control force. The present formulation is based on a first-order
shear deformation laminate theory accounting for the following
Reissner–Mindlin displacements:

u1(x, y, z, t) = u(x, y, t) + z�(x, y, t),

u2(x, y, z, t) = v(x, y, t) + z�(x, y, t),

u3(x, y, z, t) = w(x, y, t), (1)

where (u1, u2, u3) are the displacements along x, y and z di-
rections, respectively, (u, v, w) are the displacements of a point
on the mid-plane, and �and � are the slope changes in the
x and y directions (i.e. rotations about the y- and x-axes),
respectively, due to bending. The present study deals with
the postbuckling response characterized by finite deformation.
Therefore, the strains associated with the displacement (1) must
include the geometric non-linear effect. The strains according
to the von-Karman theory take the form [25]:

�1 = �(0)
1 + z�,x, �2 = �(0)

2 + z�,y, �3 = 0,

�4 = w,y + �, �5 = w,x + �, �6 = �(0)
6 + z�(1)

6 ,

�(0)
1 = u,x + 1

2w2
,x, �(0)

2 = v,y + 1
2w2

,y ,

�(0)
6 = v,x + u,y + w,xw,y , (2)

�(1)
1 = �,x, �(1)

2 = �,y, �(1)
6 = �,x + �,y ,

where, a comma denotes partial differentiation with respect
to the subscript. On reducing the three-dimensional elasticity
problem to a two-dimensional one, the following laminate con-
stitutive equations are obtained:

(Ni, Mi, Qm)

= (Aij �
(0)
j + Bij �

(1)
j − Pi, Bij �

(0)
j + Dij �

(1)
j , Amn�n),

(i = 1, 2, 6), (m, n = 4, 5). (3)

The quantities Ni, Mi and Qmn are the in-plane force resultants,
moments resultants and transverse shear resultants, defined by

(Ni, Mi, Qm) =
N∑

k=1

∫ zk

zk−1

(�i , z�i , �m) dz. (4)

The laminate stiffnesses Aij , Bij and Dij are given by

(Aij , Bij , Dij , Amn) =
N∑

k=1

∫ zk

zk−1

(c
(k)
ij (1, z, z2), c(k)

mnK) dz,

(i, j = 1, 2, 6), (m, n = 4, 5),

where zk and zk−1 are the top and bottom z-coordinates of the
kth lamina, �i are the stresses, K is a shear correction factor and
c
(k)
ij are the stiffnesses of the kth lamina refereed to the problem

coordinates. The governing equations of the laminate may be
obtained using the dynamic version of the virtual displacement
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