Accepted Manuscript

Effects of Superparamagnetic Iron Oxide Nanoparticles on the Longitudinal and Transverse Relaxation of Hyperpolarized Xenon Gas

Alex Burant, Michael Antonacci, Drew McCallister, Le Zhang, Rosa Tamara Branca

PII:	S1090-7807(18)30103-4
DOI:	https://doi.org/10.1016/j.jmr.2018.04.001
Reference:	YJMRE 6279
To appear in:	Journal of Magnetic Resonance
Received Date:	22 December 2017
Revised Date:	26 February 2018
Accepted Date:	4 April 2018

RM 1006-7027 TJ.N.YULK
JIMR
A definition of the second sec
Austitite offen at own international own ScienceDirect

Please cite this article as: A. Burant, M. Antonacci, D. McCallister, L. Zhang, R. Tamara Branca, Effects of Superparamagnetic Iron Oxide Nanoparticles on the Longitudinal and Transverse Relaxation of Hyperpolarized Xenon Gas, *Journal of Magnetic Resonance* (2018), doi: https://doi.org/10.1016/j.jmr.2018.04.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effects of Superparamagnetic Iron Oxide Nanoparticles on the Longitudinal and Transverse Relaxation of Hyperpolarized Xenon Gas

Alex Burant^{1,2}, Michael Antonacci^{1,2}, Drew McCallister^{1,2}, Le Zhang^{2,3}, Rosa Tamara Branca^{1,2}*

¹Department of Physics and Astronomy, University of North Carolina at Chapel Hill, US ²Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, US ³Department of Applied Physical Science, University of North Carolina at Chapel Hill, US

Abstract

SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) are often used in magnetic resonance imaging experiments to enhance Magnetic Resonance (MR) sensitivity and specificity. While the effect of SPIONs on the longitudinal and transverse relaxation time of ¹H spins has been well characterized, their effect on highly diffusive spins, like those of hyperpolarized gases, has not. For spins diffusing in linear magnetic field gradients, the behavior of the magnetization is characterized by the relative size of three length scales: the diffusion length, the structural length, and the dephasing length. However, for spins diffusing in non-linear gradients, such as those generated by iron oxide nanoparticles, that is no longer the case, particularly if the diffusing spins experience the non-linearity of the gradient. To this end, 3D Monte Carlo simulations are used to simulate the signal decay and the resulting image contrast of hyperpolarized xenon gas near SPIONs. These simulations reveal that signal loss near SPIONs is dominated by transverse relaxation, with little contribution from T_1 relaxation, while simulated image contrast and experiments show that diffusion provides no appreciable sensitivity enhancement to SPIONs.

Keywords: Superparamagnetic iron oxide nanoparticles, Hyperpolarized ¹²⁹Xe, Longitudinal relaxation, Transverse relaxation, Restricted diffusion

*Correspondence to: Rosa Tamara Branca, Ph.D. Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Email: rtbranca@unc.edu Download English Version:

https://daneshyari.com/en/article/7841166

Download Persian Version:

https://daneshyari.com/article/7841166

Daneshyari.com