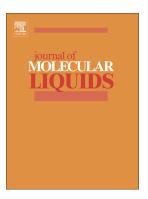
Accepted Manuscript

[Fe(CN)6]4-/[Fe(CN)6]3- based metal organic ionic frameworks and impact of Fe2+/Fe3+ on material-medicinal-properties

R.K. Ameta, Rohit R. Koshti, Akshay Vyas, Chirag Rane, Nitin Kumar Sharma, Man Singh

PII: S0167-7322(18)31856-7

DOI: doi:10.1016/j.molliq.2018.07.057


Reference: MOLLIQ 9378

To appear in: Journal of Molecular Liquids

Received date: 8 April 2018 Revised date: 9 July 2018 Accepted date: 14 July 2018

Please cite this article as: R.K. Ameta, Rohit R. Koshti, Akshay Vyas, Chirag Rane, Nitin Kumar Sharma, Man Singh, [Fe(CN)6]4–/[Fe(CN)6]3– based metal organic ionic frameworks and impact of Fe2+/Fe3+ on material-medicinal-properties. Molliq (2018), doi:10.1016/j.molliq.2018.07.057

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

 $[Fe(CN)_6]^{4-}/[Fe(CN)_6]^{3-}$ based Metal Organic Ionic Frameworks and impact of Fe^{2+}/Fe^{3+} on Material-Medicinal-Properties

R.K. Ameta*a, Rohit R. Koshtib, Akshay Vyasb, Chirag Raneb, Nitin Kumar Sharmab, Man Singha

*aSchool of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India

^bDepartment of Chemistry, KSV University, Gandhinagar, Gujarat, India

*Corresponding Author

Email: *ametarakesh40@gmail.com

Tel. No. 079-23260210

Abstract

Study reports the preparation and material-medicinal-properties (MMPs) of Metal Organic Ionic Frameworks (MOIFs) of [Fe(CN)₆]⁴⁻/[Fe(CN)₆]³⁻ with dodecyltrimethylammonium bromide (DTAB), Tetradecyltrimethylammonium bromide (TTEB) and Hexadecyltrimethylammonium bromide (HTEB). MOIFs with [Fe(CN)₆]⁴⁻ are found in liquid state as metallic ionic liquids while with [Fe(CN)₆]³⁻ in solid state (SMOIFs). MOIFs were characterized with UV/Vis, FTIR, Raman and powder XRD measurements where the ionic interaction between coordination sphere of [Fe(CN)₆]⁴⁻ /[Fe(CN)₆]³⁻ and quaternary nitrogen of DTAB was analyzed. The thermal conductivity of LMOIFs has also been studied where an increase in conductivity with temperature is noticed, inferring their electrolytic property as well as thermal stability proposing them as electrolyte for Li/ Na ionic batteries. Viscoelastic property of MOIFs reveals the mechanical stability also inferring their use in ionic batteries. MOIFs have shown their dye degradation activity studied with Methyl Orange (MO) and Methyl Red (MR) depicting impact of Fe²⁺ and Fe³⁺. MOIFs have shown their protein binding nature studied with BSA, analyzed

Download English Version:

https://daneshyari.com/en/article/7841840

Download Persian Version:

https://daneshyari.com/article/7841840

<u>Daneshyari.com</u>