Accepted Manuscript

Molecular interaction between three-dimensional graphene aerogel and enzyme solution: Effect on enzyme structure and function

journal of MOLECULAR LIQUIDS

Hamide Ehtesabi, Zeinab Bagheri, Farzaneh Eskandari, Mohammad Mahdi Ahadian

PII: S0167-7322(17)36117-2

DOI: doi:10.1016/j.molliq.2018.04.116

Reference: MOLLIQ 9019

To appear in: Journal of Molecular Liquids

Received date: 21 December 2017
Revised date: 15 April 2018
Accepted date: 23 April 2018

Please cite this article as: Hamide Ehtesabi, Zeinab Bagheri, Farzaneh Eskandari, Mohammad Mahdi Ahadian, Molecular interaction between three-dimensional graphene aerogel and enzyme solution: Effect on enzyme structure and function. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Molliq(2017), doi:10.1016/j.molliq.2018.04.116

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Molecular Interaction between Three-Dimensional Graphene Aerogel and Enzyme Solution: Effect on Enzyme Structure and Function

Hamide Ehtesabi^{a*}, Zeinab Bagheri^a, Farzaneh Eskandari^b, Mohammad Mahdi Ahadian^c

^a Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Iran

^b Protein Research Center, Shahid Beheshti University G.C., Tehran, Iran

^c Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran

Abstract

New membrane materials and processes have been extensively developed due to urgent needs for much more economic separation processes. Recently, graphene has been confirmed to be an excellent separation membrane. As there is no support in the obtained three-dimensional (3D) architecture constructed from tubular graphene network, it is possible to take full advantage of the large surface of graphene. In this study 3D graphene aerogels were synthesized by a simple method and modified to adjust hydrophilicity of the samples to achieve high liquid volumetric rate. Modified samples were used for the filtration of the enzymes including amylase, cellulose, lipase and protease. Slightly differently interactions between enzymes and samples causing different flow rates. To investigate changes in physicochemical properties of filtered enzyme, catalytic activity and structure of untreated and filtered samples were obtained using circular dichroism spectra and colorimetric assays. The configurations and functions of cellulose, lipase and protease were maintained during the processes. The results demonstrate that 3D graphene aerogels is a promising material for enzyme filtration and keep the aim of protein filtration which is providing high quality protein sample to achieve original information from interested protein species.

Keywords: Three-Dimensional Graphene Aerogel; Enzyme structure; Enzyme Function.

^{*}Corresponding author. E-mail: h_ehtesabi@sub.ac.ir

Download English Version:

https://daneshyari.com/en/article/7842001

Download Persian Version:

https://daneshyari.com/article/7842001

Daneshyari.com