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ARTICLE INFO ABSTRACT

Proteins catalyzing chemical reactions are glassy systems in which the reaction time is often below the time
of conformational relaxation. The protein is not able to sample its configuration space on the reaction time,
leading to nonergodic ensemble averages. This phenomenology makes the effective configurational temper-
ature of the protein significantly higher than the kinetic temperature of the bath. The effective temperature
is expressed in terms of the fluctuation-dissipation ratio quantifying the violation of the fluctuation dis-
sipation theorem (FDT). For reactions of protein electron transfer, the ratio of configurational and kinetic
temperatures is given by the ratio of two reorganization energies related to, correspondingly, thermal fluctu-
ations of the thermal bath and linear response of the bath to electron arriving to the active site. The violation
of the FDT leads to a significant depression of the activation barrier achieved trough nonergodic exploration
of the protein configuration space. The time of conformational dynamics, leading to equilibration, estab-
lishes the ageing time during which the enzyme has to be reset to its original configuration. Experimental
evidence and numerical simulations indicate a factor of 2-3 violation of the FDT for protein electron trans-
fer at physiological temperatures. Lowering temperature freezes the protein into a state consistent with the
FDT through a glass transition. Design principles of physiological energy chains are discussed by postulating
the need to maintain FDT violated to support catalytic function.
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1. Introduction The glassy state of a protein, or of any other material, implies that

some parts of its phase space cannot be visited on the observation
time-scale. Constraints imposed on the phase space available to
a given observable property are often described as ergodicity
breaking [4]. A convenient cartoon visualizing the issues involved
is in terms of the configuration landscape of the system [5]. The

We discuss here some general principles of how the statistics
and dynamics of individual proteins contribute to the overall effi-
ciency of energy production in biology. The problem of physiological
energy flow embraces many scales, but it starts at the level of

individual molecules converting the energy of light (photosynthesis)
or chemical redox potential (mitochondria) into the movement of
even smaller subatomic particles, electrons and protons, across the
cellular membrane [1].

Our main hypothesis is that proteins, being a specific form of
a folded linear-chain polymer, possess properties distinguishing
them from simple organic molecules used for redox chemistry in
man-made devices. Specifically, we entertain the notion, advocated
in the past [2,3], that proteins are fundamentally glassy materials.
This means that their relaxation times, related to conformational
transitions, are significantly longer than the time-scale required to
perform a specific function, a protein-catalyzed chemical reaction in
this case.
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complete energy landscape is the potential energy of the system U(q)
as a function of its all degrees of freedom q [6]. Since the complete
landscape is hard to imagine or even compute, a one-dimensional
cartoon is often used for illustration and is shown in Fig. 1. The main
feature of this picture is that, in contrast to ergodicity implicit to the
Gibbs distribution, the system can explore only a small portion of its
phase space known as a component [4]. As a result, the statistical
averages performed to calculate the observables should be restricted
to the phase space of a given component, or a cluster of them visited
on the observation time.

The transition from the ergodic Gibbs statistics to the nonergodic
statistics of glassy systems brings in a number of observable
consequences. The most important in the present context is the
violation of the fluctuation-dissipation theorem (FDT) [ 7] connecting
the response of a material to a small perturbation with the breadth
of spontaneous fluctuations caused by thermal agitation [8].
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Fig. 1. Cartoon of the energy landscape of a glassy system, which is locked in a local
minimum on the observation time-scale. The phase space available to the system is
limited to a single component I' within a constrained part of the available phase space
(q,p)- As the system ages on the time-scale of its a-relaxation, it visits an increas-
ing number of components, thus asymptotically approaching the Gibbs statistics in
configuration space.

The essence of the linear response theory and the FDT is
illustrated in Fig. 2. It shows a step perturbation by an external force
and the time response of the dynamic variable A, with its average
value equal to zero before the perturbation has been applied. The
ratio of the time-dependent response (A); (the average is taken with
the time-dependent distribution function [7] f{T,t) evolving on the
phase space I') to the external force step Af.y; provides the time-
dependent susceptibility y(t) = (A)t/Afex. It can be found from the
FDT according to the relation [7,9]

2(t) = B[C(0) - C(1)]. (1)

Here,3 = (kgT)~!isthe inverse temperature and C(t) = (A(0)A(t))eq
is the time autocorrelation function of the variable A(t), (A)eq = 0.
Here and below, the angular brackets denote an ensemble average,
which can be either the equilibrium Gibbs ensemble or an ageing
nonequilibrium ensemble specific to averages performed over the
states of a protein or of a quenched glass former. The former is

Afext

t

Fig. 2. Step perturbation of the external force f,,(t) and the linear response of the
dynamic variable (A);. The response function y(t) is the ratio of (A); and the force step
Afexb

specified with the subscript “eq” and no subscript is given for the
latter.

Two predictions come from Eq. (1). First, one expects a linear
relation between y(t) and ((t) with the slope equal to —3 (Fig. 3a).
This is the FDT relation between the dynamic variables. Second, the
correlation function C(t) vanishes when t — oo and one arrives at the
relation between the static response and the static variance of A

X = x(o0) = 5<A2>eq~ (2)

This relation is of main interest in application to protein’s function
discussed below. Before we turn to those issues, it is useful to outline
a general phenomenology of glassy materials and related signatures
of the FDT violation. We turn to the problem of structural recovery
of glasses exposed to ageing [10-13]. The main phenomenological
issues are summarized in Fig. 3.

The linear relation between the susceptibility y(t) and the
correlation function ((t), with the slope of —3 [Eq. (1)], is shown
in Fig. 3a. In a nonequilibrium system ageing through the waiting
time t,,, the time translational invariance of the dynamic correlation
functions is lost [9] and the correlation function C(t, t,,) depends on
two times, t and ty, instead of their difference t — t,,. The second,
ageing time refers to the system’s evolution from an originally
created (quenched) nonequilibrium state toward equilibrium. The
FDT is violated during the ageing process [14-16]. This violation is
reflected by the slope —B. between y(t) and ((t) distinct from —f3
predicted by Eq. (1) (Fig. 3b) [17]. As t,, becomes longer, the portion
of the plot with the slope —fB. shrinks, eventually leading to the
standard equilibrium expectations.

The nonequilibrium quenched state of a glass former is created
by experimental preparation placing the system in a local minimum
higher in energy than the global minimum of the equilibrium state.
The ageing process then corresponds to the evolution of the energy
or the enthalpy of the system from the high value of the trapped
glassy state Hy to the equilibrium value H,, consistent with the bath
temperature T (Fig. 3c) [10]. Quenching of glass formers is typically
achieved by rapid cooling, but any nonequilibrium preparation of the
system will create a quenched state. For instance, for physiological
energy flow considered here, the instantaneous, on the time-scale
of nuclear motions, tunneling of the electron to an active site of a
protein creates an initial nonequilibrium quenched state.

The temperature at which the system was quenched can be speci-
fied as an effective, or fictive [10], temperature. Alternatively, one can
use the fluctuation-dissipation ratio, i.e., the slope Bu = 1/(kpTefr)
between y(t) and C(t, ty) to define Teg [12,14,17]. In this paper, we
will use a somewhat different definition, also based on Eq. (1), but
referring to the static limit of the FDT [19]

Teir _ B(A?)
T 3)

Such defined fluctuation-dissipation ratio involves the effective
temperature Teg, Which can be associated with the “configurational
temperature” since it, like the fictive temperature of glass science
[10,20,21], characterizes the position of the system in the configura-
tion landscape. This effective temperature does not carry a universal
character, in contrast to the kinetic temperature at equilibrium, and
instead depends on the variable A used to establish it [22,23]. This
difficulty is also shared by the phenomenological fictive tempera-
ture [21]. This problem does not complicate our formulation since
we use the effective temperature in a very specific context of an
activated chemical reaction catalyzed by the protein. The dynamic
variable A becomes the reaction coordinate monitoring the transition
over the activation barrier. As we show below, such defined effec-
tive temperature quantifies the depression of the activation barrier
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