
Accepted Manuscript

Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM

M. Sheikholeslami

PII: S0167-7322(18)31102-4

DOI: doi:10.1016/j.molliq.2018.04.111

Reference: MOLLIQ 9014

To appear in: Journal of Molecular Liquids

Received date: 3 March 2018 Revised date: 18 April 2018 Accepted date: 22 April 2018

Please cite this article as: M. Sheikholeslami, Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Molliq(2017), doi:10.1016/j.molliq.2018.04.111

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Influence of magnetic field on Al₂O₃-H₂O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM

M. Sheikholeslami¹

Department of Mechanical Engineering, Babol Noshirvani University of Technology,
Babol, Iran

Abstract

In this research, nanofluid flow in a three dimensional porous cavity under the impact of magnetic field is simulated by means of Lattice Boltzmann Method. The enclosure is full of Al₂O₃-H₂O nanofluid. Properties of nanofluid are estimated via single phase model considering Brownian motion effect. Mesoscopic simulations are done for various values of Darcy number, Hartmann number and Reynolds number. Results demonstrate that temperature gradient has direct relationship with Darcy number and Reynolds number. Increasing Lorentz forces leads to reduce in Nusselt number.

Keywords: Nanofluid; Lorentz forces; Forced convection; Lattice Boltzmann Method; Sphere obstacle; Porous medium.

Nomenclature

 f_k^{eq} Equilibrium distribution. au Lattice relaxation time u,v,w Velocity components ϕ Volume fraction e_{α} Discrete lattice velocity in direction β Thermal expansion coefficient

 $E-mail\ address: \underline{mohsen.sheikholeslami@nit.ac.ir}\ ,\ \underline{mohsen.sheikholeslami@yahoo.com}\ (M.\ Sheikholeslami)$

¹ Corresponding author:

Download English Version:

https://daneshyari.com/en/article/7842324

Download Persian Version:

https://daneshyari.com/article/7842324

<u>Daneshyari.com</u>