Accepted Manuscript

A surface energy driven dissolution model for immiscible Cu-Fe alloy

journal of MOLECULAR LIQUIDS

S.C. Liu, J.C. Jie, J.J. Zhang, P.F. Wang, T.M. Wang, T.J. Li, G.M. Yin

PII: S0167-7322(18)31288-1

DOI: doi:10.1016/j.molliq.2018.04.020

Reference: MOLLIQ 8923

To appear in: Journal of Molecular Liquids

Received date: 14 March 2018 Revised date: 3 April 2018 Accepted date: 4 April 2018

Please cite this article as: S.C. Liu, J.C. Jie, J.J. Zhang, P.F. Wang, T.M. Wang, T.J. Li, G.M. Yin, A surface energy driven dissolution model for immiscible Cu-Fe alloy. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Molliq(2017), doi:10.1016/j.molliq.2018.04.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A surface energy driven dissolution model for immiscible Cu-Fe alloy

S.C. Liu¹, J.C. Jie^{1*}, J.J. Zhang¹, P.F. Wang¹, T.M. Wang¹, T.J. Li², G.M. Yin¹

¹ Key Laboratory of Solidification Control and Digital Preparation Technology

(Liaoning Province), Dalian University of Technology, Dalian 116024, China

² Laboratory of Special Processing of Raw Materials, School of Materials Science and

Engineering, Dalian University of Technology, Dalian 116024, China

Corresponding author: Tel. / Fax: +86-411-84706220

E-mail addresses: jiejc@dlut.edu.cn

Abstract

Cu-Fe alloy processed by conventional preparation methods has serious

large-scale composition segregation or spatial separation of individual Cu and Fe

phases prior to solidification. For immiscible Cu-Fe alloy, a homogeneous melt is the

prerequisite to obtain the subsequent uniform solidification microstructure. In this

paper, the uniform metastable immiscible $Cu_{100-x}Fe_x$ alloys (x=10, 20, 30, 40 wt.%)

were prepared by arc-melting. The results indicated that with increasing melting times,

the initial aggregated Fe-rich melt gradually dissolves into the bulk copper matrix and

a homogeneous melt is obtained. Herein a thermodynamic model was constructed to

discuss the surface energy driven melting process and the formation of uniform Cu-Fe

alloy. During melting process, if the radius of detached liquid Fe-rich droplet is less

than the calculated critical radius, the surface energy is high enough to compensate for

the partial molar excess Gibbs energy of iron, thereby leading to the spontaneously

dissolution of detached liquid Fe-rich droplet into the bulk liquid. As a result, the

aggregated Fe-rich melt dissolves step by step eventually forming a homogeneous

1

Download English Version:

https://daneshyari.com/en/article/7842494

Download Persian Version:

https://daneshyari.com/article/7842494

<u>Daneshyari.com</u>