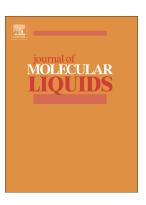
Accepted Manuscript

Scalable preparation of hierarchical porous carbon from lignin for highly efficient adsorptive removal of sulfamethazine antibiotic

Jiangdong Dai, Atian Xie, Ruilong Zhang, Wenna Ge, Zhongshuai Chang, Sujun Tian, Chunxiang Li, Yongsheng Yan

PII: S0167-7322(17)35599-X

DOI: https://doi.org/10.1016/j.molliq.2018.02.042


Reference: MOLLIQ 8684

To appear in: Journal of Molecular Liquids

Received date: 22 November 2017 Revised date: 26 January 2018 Accepted date: 10 February 2018

Please cite this article as: Jiangdong Dai, Atian Xie, Ruilong Zhang, Wenna Ge, Zhongshuai Chang, Sujun Tian, Chunxiang Li, Yongsheng Yan, Scalable preparation of hierarchical porous carbon from lignin for highly efficient adsorptive removal of sulfamethazine antibiotic. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Molliq(2017), https://doi.org/10.1016/j.molliq.2018.02.042

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CEPTED MANUSCR

Scalable Preparation of Hierarchical Porous Carbon from Lignin for Highly Efficient Adsorptive

Removal of Sulfamethazine Antibiotic

Jiangdong Dai^{1*}, Atian Xie¹, Ruilong Zhang², Wenna Ge², Zhongshuai Chang¹, Sujun Tian¹, Chunxiang Li^{1*}, Yongsheng Yan¹

¹ Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical

Engineering, Jiangsu University, Zhenjiang 212013, China

² School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

In order to efficiently remove sulfamethazine (SMZ) antibiotic from wastewater, in this work,

we first described a facile and scalable synthesis of hierarchical porous carbon using industrial by-

product sodium lignosulfonate (SLS) as raw source and potassium hydroxide as inorganic template

and chemical activator, by a self-templating and in-situ activation method. The Lignin-derived

hierarchical porous carbon obtained at an optimal mass ratio of SLS and alkali of 1:3 (LHPC-3)

exhibited a largest specific surface area of 2235 m² g⁻¹ and pore volume of 1.512 cm³ g⁻¹. LHPC-3

possessed a very high saturated monolayer adsorption capacity of 854.7 mg g⁻¹ at 288 K. The

pseudo-second-order rate model described the adsorption kinetics data. It was found that this carbon

could be also effective in the high salt environment. Physical adsorption played in an important role

in the process of capture SMZ molecules from water. This hierarchical porous carbon had good

stability and regeneration property, providing the possibility for the practice application. We gave a

novel, simple and effective technique to obtain high-performance hierarchical porous carbon for

various use, especially for wastewater treatment.

Keywords: Sulfamethazine; Industrial lignin; Alkali self-template and activation; Hierarchical

porous carbon; Adsorption

* Corresponding author. Tel.: +86-0511-88790885; fax: +86-0511-88790885.

E-mail address: daijd@ujs.edu.cn (Dai J.D.) and lcx@mail.ujs.edu.cn (Li C.X.)

Download English Version:

https://daneshyari.com/en/article/7842794

Download Persian Version:

https://daneshyari.com/article/7842794

<u>Daneshyari.com</u>