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a b s t r a c t

The capability of conventional crystal plasticity theory is extended in this paper to model a
single dislocation behavior in heteroepitaxial structures. The plastic slip associated with
each slip system is described by a continuous smooth field independently, which is the
phase field interpolating between a slipped and an unslipped region. A dislocation is
identified with location where the phase field value changes smoothly, to represent a
smeared dislocation. Under a thermodynamically consistent framework that distinguishes
between stored energy and dissipated energy during plastic deformation, the coupled
balance equations of plastic slip evolution and quasi-static stress equilibrium are derived
by using the principle of virtual power. With numerical implementation by finite element
method, it is flexible to deal with material anisotropy and elastic modulus mismatch in
heteroepitaxial structures at micro-scale, which are advantages of the proposed model
compared to Khachaturyan-type phase field model of dislocations. Another advantage is
that it is straightforward to handle the interaction and co-evolution of several types of
material microstructures, such as dislocations and interfaces, within a unified continuum
mechanics framework. Several examples are presented to illustrate the applicability and
accuracy of the new method in modeling dislocations in complex heteroepitaxial
structures.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Heteroepitaxial structures, e.g. epitaxial films or coreeshell nanopillars, have recently received much attention because of
their important applications in engineering, such as electronics, optoelectronics and solar cells (Freund, 2000; Fu et al., 2004;
Panda and Tseng, 2013). However, dislocation-free heteroepitaxial structures cannot be grown with arbitrary thickness and
misfit dislocation will form above a critical thickness. The dislocation and its strong interaction with material interface not
only influence the mechanical properties such as fracture toughness and strength, but also change the electrical or optical
properties of heteroepitaxial crystalline materials (Bennett, 2010; Zbib et al., 2011; Liu et al., 2013; Abdolrahim et al., 2014).
Understanding the underlying dynamics of dislocations in heteroepitaxial structures is crucial to provide a better insight into
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the material design and property prediction. However, there is still lacking of an effective tool to study the dislocation be-
haviors in complex heteroepitaxial structures.

In the past decades, discrete dislocation dynamics (DDD) that explicitly tracks dislocation lines has proven to be a useful
simulation method in modeling dislocations in homogeneous bulk crystals (Amodeo and Ghoniem, 1990; Zbib et al., 1998).
However, it is difficult to deal with the dislocations in heteroepitaxial structures due to the image force produced by the
interfaces. Currently, most DDDmethods are based on the superposition of analytical solutions of stress fields for dislocations
in infinite domain. However, the existence of multi-material Green's functions is limited (Han and Ghoniem, 2005). The
solution on a finite domain is the sum of infinite domain dislocation solutions and the image field corrections from the model
boundary, which is usually calculated by boundary element method (El-Awady et al., 2008; Takahashi and Ghoniem, 2008) or
finite element method (FEM) (Giessen and Needleman, 1995; Fivel and Canova, 1999; Weygand et al., 2001). The super-
position DDD method cannot reflect the basic concept of plastic strain and is limited by relying on the existed analytical
solutions.

As an alternative, the coupled discrete-continuum model (DCM) was proposed, in which dislocations are associated with
eigenstrain and the equilibrium field is determined directly by FEM (Lemarchand et al., 2001; Zbib and de la Rubia, 2002; Liu
et al., 2009; Gao et al., 2010; Cui et al., 2014; Vattr�e et al., 2014). The critical thickness of epitaxial films for plastic relaxation
(Groh et al., 2003) and the dislocation behaviors in heteroepitaxial films (Cui et al., 2015a) have been studied by this method.
However, the DCM still needs the analytical solution to modify the stress field when the dislocation is close to the interface
(Cui et al., 2015b). In addition, how to handle the finite deformation is still a challenging issue that all the discrete based
models are facing.

Recently, several dislocation modeling methods completely based on continuum mechanics framework are developed.
The most advantage of these methods is that the equilibrium field is solved directly. Based on field dislocation mechanics, a
general crystal plasticity model was developed by Acharya (2001). The dislocation density serves as the primary internal
variable and a finite element discretization of the model was presented (Roy and Acharya, 2005). It has been used to study the
mechanical response of multi-layer thin films (Puri et al., 2011). Inspired by crack modeling using extended finite element
method (XFEM), the displacement fields of dislocation are approximated by the sum of standard finite element part and
discontinuous enriched part (Belytschko and Gracie, 2007; Gracie et al., 2007). However, the enrichment for the dislocation
core is not available for anisotropic materials (Gracie et al., 2008; Oswald et al., 2009).

Among all the dislocation modeling methods, the phase field method (PFM) which represents the discontinuities
associated with dislocations by regularization, is receiving more and more attentions (Khachaturyan, 1983; Hu and Chen,
2001; Wang et al., 2001; Rodney et al., 2003; Koslowski et al., 2004). The advantage is that it can automatically take into
account the interaction and co-evolution of dislocations and interfaces within a unified continuummechanics framework
(Wang et al., 2003; Lei et al., 2013). Currently, most phase field models of dislocations are based on the microelasticity
theory of Khachaturyan and Shatalov (Khachaturyan, 1967; Khachaturyan and Shatalov, 1969; Khachaturyan, 1983). In the
model, it takes ‘stress-free’ inelastic strain to represent dislocations. The elastic strain energy caused by dislocations is
then expressed as a closed form function of the inelastic strain through the exact Green's function. While, the analytical
Green's function solution is not available for complex structures or complex boundary conditions. For elastically inho-
mogeneous structures, the virtual misfit strain which is considered as additional phase fields has to be introduced and
increases the number of equations to be solved (Wang et al., 2002). The dislocation behaviors in heteroepitaxial thin films
have been studied by the phase field microelasticity model (Wang et al., 2003). The film and the substrate are assumed
having the same elastic modulus to avoid dealing with the additional misfit strain (Wang et al., 2003). On the other hand,
the equations are solved by the fast Fourier transform (FFT) method, which restricts the application to complex struc-
tures, like heteroepitaxial coreeshell nanopillars. Besides, based on Ginzburg-Landau equation, the model does not
distinguish between stored energy and dissipated energy during plastic deformation (Wang et al., 2001, 2003; Lei et al.,
2013).

In this work, a micro-scale crystal plasticity model based on phase field theory is developed to overcome the difficulties in
the Khachaturyan-type phase field model of dislocations. In contrast, the ‘stress-free’ inelastic strain is directly considered as
the plastic strain based on crystal plasticity theory in the proposed model. The plastic slip associated with each slip system is
described by an independent phase field variable to model a single dislocation. The elastic strain energy is expressed as a
function of the elastic strain through the crystal plasticity constitutive model. Under a thermodynamically consistent
framework that distinguishes between stored energy and dissipated energy during plastic deformation, the coupled balance
equations of plastic slip evolution and quasi-static stress equilibrium are derived by using the principle of virtual power. Then
the boundary value problem is solved directly by FEM. It can be used for complex structures or complex boundary conditions
where the analytical Green's function solution is not available, which is one advantage of the proposed model. Another
advantage is that the elastic modulus mismatch in heteroepitaxial structures is easy to be treated without additional com-
plications. Besides, with numerical implementation by FEM, it is flexible to deal with finite deformation in heteroepitaxial
structures at micro-scale.

An outline of this paper is given as follows. The theoretical model is developed in Section 2. Three computational dem-
onstrations are presented in Section 3, which include a screw dislocation near a free surface, a screw dislocation in an
anisotropic material and an edge dislocation near a bimaterial interface. Through these examples, the accuracy of the pro-
posed model is studied by comparing with analytical solutions. Dislocations in heteroepitaxial structures are simulated in
Section 4. The conclusions are provided in Section 5.
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