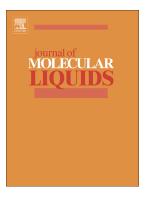
Accepted Manuscript

Fe3O4-Ethylene glycol nanofluid forced convection inside a porous enclosure in existence of Coulomb force

M. Sheikholeslami, M. Shamlooei, R. Moradi

PII: S0167-7322(17)34350-7

DOI: doi:10.1016/j.molliq.2017.11.048


Reference: MOLLIQ 8164

To appear in: Journal of Molecular Liquids

Received date: 17 September 2017 Revised date: 5 November 2017 Accepted date: 7 November 2017

Please cite this article as: M. Sheikholeslami, M. Shamlooei, R. Moradi, Fe3O4-Ethylene glycol nanofluid forced convection inside a porous enclosure in existence of Coulomb force. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Molliq(2017), doi:10.1016/j.molliq.2017.11.048

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fe₃O₄- Ethylene glycol nanofluid forced convection inside a porous

enclosure in existence of Coulomb force

M. Sheikholeslami ^{1,a}, M. Shamlooei ^a, R. Moradi ^b

^a Department of Mechanical Engineering, Babol Noshirvani University of

Technology, Babol, Iran

^b Department of Chemical Engineering, School of Engineering and Applied Science,

Khazar University, Baku, Azerbaijan

Abstract

In this article, impact of shape factor on nanofluid forced convection in

existence of electric field is simulated via Control Volume based Finite Element

Method. Effect of thermal radiation on energy equation is taken into account. The

porous enclosure is filled with Fe₃O₄- Ethylene glycol nanofluid. Viscosity of

nanofluid is varied with electric field. The bottom wall is considered as positive

electrode. Numerical method is employed to find the roles of Reynolds number (Re),

Darcy number (Da), radiation parameter (Rd), nanofluid volume fraction (ϕ) and

supplied voltage $(\Delta \varphi)$. Results proved that Nusselt number augments with augment of

thermal radiation. Thermal boundary layer thickness decreases with increase of Darcy

number and Coulomb force.

Keywords: Electrohydrodynamic; Nanofluid; Thermal radiation; Porous medium;

Shape of nanoparticles; CVFEM.

Nomenclature

¹ Corresponding author:

Email: mohsen.sheikholeslami@yahoo.com, mohsen.sheikholeslami@nit.ac.ir (M. Sheikholeslami)

1

Download English Version:

https://daneshyari.com/en/article/7843615

Download Persian Version:

https://daneshyari.com/article/7843615

<u>Daneshyari.com</u>