Accepted Manuscript

Assessing the potential of different nano-composite (MgO, Al2O3-CaO and TiO2) for efficient conversion of Silybum eburneum seed oil to liquid biodiesel

Anjuman Shaheen, Shazia Sultana, Houfang Lu, Mushtaq Ahmad, Maliha Asma, Tariq Mahmood

PII:	S0167-7322(17)33983-1
DOI:	doi:10.1016/j.molliq.2017.11.053
Reference:	MOLLIQ 8169
To appear in:	Journal of Molecular Liquids
Received date:	29 August 2017
Revised date:	3 November 2017
Accepted date:	7 November 2017

Please cite this article as: Anjuman Shaheen, Shazia Sultana, Houfang Lu, Mushtaq Ahmad, Maliha Asma, Tariq Mahmood, Assessing the potential of different nanocomposite (MgO, Al2O3-CaO and TiO2) for efficient conversion of Silybum eburneum seed oil to liquid biodiesel. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Molliq(2017), doi:10.1016/ j.molliq.2017.11.053

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Assessing the Potential of Different Nano- composite (MgO, Al₂O₃-CaO and TiO₂) for Efficient Conversion of *Silybum eburneum* Seed Oil to Liquid Biodiesel

Anjuman Shaheen^{1,} Shazia Sultana^{2,3}, Houfang Lu², Mushtaq Ahmad^{3,4}*, Maliha Asma¹, and Tariq Mahmood⁵

¹ Department of Environmental Science, Female Campus, International Islamic University 44000, Islamabad, Pakistan

²Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, China

³Biodiesel Lab, Department of Plant Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan

⁴Centre of Natural Products Lab, Chengdu Institute of Biology, Sichuan, China

⁵National Centre for Physics (NCP), Quaid-i-Azam University, Islamabad

* **Corresponding Author:** M.Ahmad (mushtaqflora@hotmail.com); Phone No: +28-13881710340

Abstract

This study investigated the potential of nano-composite MgO, Al₂O₃-CaO and TiO₂ for efficient conversion of novel non edible seed oil of Silybum eburneum into liquid biodiesel. Silybum eburneum contains oil contents (37.7%) and low free fatty acid (FAA) value (0.16 mg KOH/g). The synthesized heterogeneous nano- catalysts were characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Energy Dispersive X-Ray Spectroscopy (EDX) and Scanning Electron Microscopy (SEM) techniques. The highest conversion efficiency was achieved (91 % biodiesel yield) using MgO catalyst followed by Al₂O₃-CaO and TiO₂ at 0.1% catalysts loading. The optimized experimental variables comprised of molar ratio (1:3), temperature (70 °C), reaction time (3hrs.) and stirring rate (600 rpm) using reflux transesterification route. The XRD analysis showed the sizes of the crystal lattices with a sequence of 13nm for MgO, 29 nm for Al₂O₃-CaO and 37nm for TiO₂ which reveals that smaller the size of the crystal structure, higher will be the conversion efficiency. The SEM of MgO showed exclusively porous lamellar like smooth surface highly agglomerated with nano entities with a particle size of 50±10 nm length or width and about 20 nm thickness.SEM images of Al₂O₃-CaO nano-particles showed the size range from 27 nm to 75nm having irregular morphology including spherical as well as rod shape with smooth surface and different size. The

Download English Version:

https://daneshyari.com/en/article/7843660

Download Persian Version:

https://daneshyari.com/article/7843660

Daneshyari.com