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A B S T R A C T

It is common practice while studying complex liquids to analyze their relaxations in time as well as in
frequency. Unfortunately, there are not often at hand short and compact expressions corresponding simul-
taneously to the mathematical formulation of a same phenomenon in both spaces. Therefore, this work is
focused towards the approximation of Fourier Transform of certain Weibull distributions (the time deriva-
tive of the Kohlrausch-Williams-Watts function) by Havriliak-Negami functions. In particular, it was found
that a small interval of low frequencies are needed to recover the main traits of the relaxation for the
stretched (b ≤ 1) and squeezed (b> 1) instances. However, it’s easily recognizable that the weight of the
low frequency part competes with the weight of the high frequency part, and the former distorts the power
law behavior, diverging from −b. In consequence, the tail’s sturdiness influences the asymptotic trend of HN,
suggesting a careful design of the approximant, the method of optimization, the absent of data errors, and
of course the frequency domain. In this sense, we were able to explain how the asymptotic laws naturally
emerge as a function y, and validate the suitability-flexibility-instability of our local approximants.

© 2017 Published by Elsevier B.V.

1. Introduction

Many relaxation phenomena in simple or complex fluids are most
often fitted as a function of time by the function of Kohlrausch-
Williams-Watts [1–5], or as a function of frequency such as
Debye [6], Cole-Cole [7], Cole-Davidson [8], Havriliak-Negami [9,10].
The Kohlrausch relaxation function, have become ubiquitous in
many areas of Physics and Chemistry, from the discharge of capac-
itors and dielectric properties of polymers, to the study of com-
plex systems and autocorrelation functions in molecular dynamics
[11–26], as well as in soft-matter [27–35]. In such cases, any ensem-
ble of interacting elements organized in multiscale clusters, whose
local relaxations, or restructuring bonds jump with random delay
times of type t(−1−b), should present an autocorrelation, or decay,
of Kohlrausch’s nature [28,36-38]. Despite its simple form, the rela-
tion between the b parameter and the thermodynamic conditions
(temperature, pressure, etc.) at which a relaxation process occurs
lack of a direct connection and interpretation, making a very diffi-
cult task for the experimentalists and theoreticians to disentangle
its hierarchical structure. Such facts, advises us to study relaxation
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behavior not only through its dynamical response along time but also
in other spaces of representation, such as of frequency [19,34,39-45].
However, there is no obvious mathematical approach for an ana-
lytical and compact transformation from time to frequency domain.
Besides the existence of its Fourier and Laplace transforms for
0 < b ≤ 2, it also presents several problems of convergence
which is possible to get round with numerical methods or resum-
mation of series [16,46-50]. Nevertheless, a concise mathematical
formula to give account, even approximately, of such transforms
would make it easier to compare with the most common math-
ematical functions in the complex domain. Additionally, it would
be of great utility and will provide a valuable set of techniques
for employing in different analytical and laboratory procedures. For
example, to accelerate the calculations or evaluate repeatedly such
functions; in analysis and filtering of data by identifying the exis-
tence of superposed signals, or removing strong noise [48,49]; as
well as to provide an exhaustive account of characteristic relaxation
times – real or virtual – [19,34,41], and justify the underlying domin-
ion behavior in diverse mechanisms [19,34,40-42,44,45,51,52].

In this sense, a considerable effort to provide a theoretical
background and interconnect both spaces have been reported in
the literature. However, such representations relies on numerical
assumptions or non-closed analytical representations. So far, most
of the studies have focused on the stretched exponential case (0 <
b ≤ 1), and very little is known about the squeezed or compressed
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case (1 < b ≤ 2). Hence, we examined here, issues related with
the asymptotic behavior of the Kohlrausch’s (or Weibull’s [53,54])
FT in the frequency domain, its possible description through an ana-
lytical form, and the type of function or combination of them to
represent the original data in the whole range of frequencies. These
points will be addressed in the following, by showing how a series
of approximations provides a good description in both low and high
frequencies, and further, how each term shares its contribution to
the local structure of a Kohlrausch relaxation function.

The article is organized as follows: In Section 2, we give the
analytical and computational considerations employed in the study,
while in Section 3 we present the results by decomposing the shape
parameter b in two, b ≤ 1 and b> 1, intervals. In each case, we
examine the asymptotic behavior by numerical samplings in y-space
and extending the limits in t-space. The description of high frequen-
cies decays is given by a unique set of strict HN functions when b ≤ 1,
and with a set of the same kind, although parametrically extended if
b> 1. The discussion of our results, and their comparison with pre-
vious studies are presented in Section 4 with some conclusions and
further considerations.

2. Analytical and computational considerations

We introduce the notation, 0K,b(t) ≡ exp − tb for the Kohlrausch
relaxation function, 0 ≤ t < ∞, b ≤ 1, and notice that we use here
dimensionless variables solely (normalized), [19] for both times and
frequencies, i.e.t/tK �→ t and ytK �→ y. Then, for the one-sided FT
wb(y) =

∫ ∞
0 e−iyt0K,b(t)dt and for minus the transformation of the

Weibull distribution we have xb(y) = − ∫ ∞
0 e−iyt d

dt0K,b(t)dt, both
related in y−space by xb(y) + iywb(y) = 1. The modulus of func-
tion xb(y) presents the following asymptotic behavior in the domain
of frequencies: |xb(y)| ∼ 1 when y → 0 and |xb(y)| ∼C(b + 1)/yb

as y → ∞, being monotonically decreasing in the y-values and
strongly depending on the value of the parameter b. Therefore, we
will show when approximating the mentioned transform, how the
parameters of the HN function [9,10], HNa,c,t,k(y) = 1

(1+(iytHN )a )c ,
0 < a,c ≤ 1, are uniquely determined by the parameter b.

In short, we have then the Ap1HN and Ap2HN approximants:

Ap1HN = xb(y) ≈ k

(1 + (ity)a)c
(1)

Ap2HN = xb(y) ≈
2∑

s=1

ks

(1 + (itsy)as )cs
(2)

with share coefficients k and k1 ≡ k and k2 = 1 − k1 in Eqs. (1)
and 2, respectively. It was shown that, a double approximant of HN
functions describe fairly well the FFT of the Weibull distribution,
as well as the Cole-Davidson-Kohlrausch family [19,34]. The ques-
tion is then how sensitive are the parameters obtained during the
optimization to reproduce the asymptotic laws indexed to them (e.g.
ai •ci = ai •ci(b) when the rest are also functions of b) [41,42,55].

The range of simulated b parameters corresponds to the stretched
instance with 0 < b ≤ 1 and the squeezed or compressed instance
for 1 < b ≤ 2. The chosen grid points have a variable size step of
0.1 with intermediate values of 0.03 in the whole range of b and a
starting point of 0.02. To this end, we have used two domains of fre-
quencies. One of them comprehends the range of m=0–500 (low to
medium) being y = 2pm, as it was given in Ref. [19], while the other
one extends to higher frequencies with m = 0 − 1012 if b ≤1 and
m = 0 − 107 for b ≥1. The reason for these distinct intervals is due
to the increasing numerical noise that overshadows the signal, while
the large domain is to provide a concise and compact mathematical
description. That could be helpful in exploring different kind of relax-
ations, associated to several size scales and diverse phenomena, as
well as to reconstruct signals with high accuracy, based on rigorous
criteria instead of arbitrary ones.

Finally, there will be three general sampling steps (r1, r2 and rsl)
and three particular ones (r2b, r2 * and rsl *), which can be seen as
implicit weights during the optimization procedure. The r1 and r2

are associated with a narrow frequency domain (0–500), while rsl is
associated to a wider domain, 0– 107 (b ≥1) and 0– 1012 (b ≤1),
respectively. The r1(dm = 0.5) is a linear coarse mesh dominated by
tail values in medium frequencies, with a residual influence of low
frequencies. The r2(dm = 0.001), is a linear fine mesh with many
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Fig. 1. Left side (upper and lower panels), 1st and 2nd logarithmic derivatives of log10|xb(y)| for the rsl sampling mesh, as a function of m and b in the interval of 0 < b ≤ 1. Right
side, comparison between the tail exponent d (triangles down) vs b for the r2* and rsl* sampling meshes.
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