Journal of Molecular Spectroscopy 347 (2018) 19-23

Contents lists available at ScienceDirect

Journal of Molecular Spectroscopy

journal homepage: www.elsevier.com/locate/jms

High-resolution far-infrared synchrotron FTIR spectrum of the v_{12} band of formamide- d_1 (DCONH₂)

T.L. Tan^{a,*}, Q.Y. Wu^a, L.L. Ng^a, Dominique R.T. Appadoo^b, Don McNaughton^c

^a Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore ^b Australian Synchrotron, 800 Blackburn Rd., Clayton, Victoria 3168, Australia

^c School of Chemistry, Monash University, Wellington Rd., Clayton, Victoria 3800, Australia

ARTICLE INFO

Article history: Received 21 February 2018 In revised form 9 March 2018 Accepted 10 March 2018 Available online 12 March 2018

Keywords: DCONH₂ Formamide isotopologue FTIR synchrotron spectroscopy Rovibrational constants Rovibrational structure

ABSTRACT

The spectrum of the v_{12} band of formamide- d_1 (DCONH₂) was recorded using a synchrotron Fourier transform infrared (FTIR) spectrometer coupled to the Australian Synchrotron THz/Far-IR beamline, with an unapodized resolution of 0.00096 cm⁻¹ in the 350–210 cm⁻¹ region. For the first time, rovibrational constants up to five quartic and two sextic terms were derived for the $v_{12} = 1$ state through the fitting of a total of 2072 far-infrared transitions using Watson's *A*-reduced Hamiltonian in the *I*' representation with a root-mean-square (rms) deviation of 0.000073 cm⁻¹. The band centre of the v_{12} band of DCONH₂ was found to be 289.3327553(47) cm⁻¹ although the experimental uncertainty was limited to ± 0.0002 cm⁻¹. Ground state rovibrational constants of DCONH₂ up to five quartic and two sextic constants were derived from a fit of 847 ground state combination differences (GSCDs) obtained from the infrared transitions of 0.000108 cm⁻¹. The ground state rotational constants (*A*, *B*, and *C*) of DCONH₂ were improved while the ground state centrifugal distortion constants were accurately obtained for the first time. The uncertainty of the measured infrared lines was estimated to be ± 0.0002 cm⁻¹. From the ground state rotational constants, the inertial defect of DCONH₂ was calculated to be 0.0169412(11) uÅ².

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Formamide (HCONH₂) is an important molecule to study mainly because it contains the simplest amide with a peptide bond (NH₂-CO). This peptide bond has been long established to be the building block of proteins and polypeptides of amino acids [1,2]. Furthermore, the formamide molecule has been detected in the interstellar medium in 1971 [3], and it is considered to be the potential precursor of acetamide [4] which also carries a peptide bond. Molecular studies on these two peptide-carriers are useful for the understanding of interstellar prebiotic chemistry [5].

Infrared spectroscopic studies on the formamide molecule were carried out as early as 1960 when Suzuki [6] measured the vibrational spectra of formamide (HCONH₂) and its deuterated species (HCOND₂, DCONH₂, and DCOND₂) in their liquid phases. In his work, the band centers of 9 fundamental bands of each of the 4 molecules were obtained. In 1960, Costain and Dowling [7] were among the first to study the microwave spectrum and molecular structure of formamide and some of its isotopologues. They suggested a non-planar, pyramidal structure for the molecule based on the inertial defects and other evidence through various isotologues. In 1974, Hirota et al. [8] concluded the formamide molecule to be planar, based upon microwave spectroscopy and low resolution far-infrared data for ¹³C and ¹⁸O species of NH₂CHO and ND₂CHO. Later in 1983, Sugawara et al. [9] recorded the Fourier transform infrared (FTIR) spectra of HCONH₂ and DCONH₂ in the vapour phase in the $4000-400 \text{ cm}^{-1}$ region with a resolution of 0.24 cm⁻¹. They identified the band centers of most of the fundamental bands of both formamide molecules and derived the rotational constants (A and B) of the v_{12} = 2, and v_{12} = 3 states of HCONH₂ for the first time. Furthermore, high-resolution infrared spectra of HCONH₂ and DCONH₂ were recorded by Brummel et al. [10] in 1994 using molecular-beam optothermal spectroscopy in the 3456-3426 cm⁻¹ region of the symmetric NH stretching mode (the v_2 band). In their work, the rotational constants (A, B, and C) of the ground state and excited state of HCONH₂ and DCONH₂ were derived with a rms deviation of 0.0026 cm⁻¹ and 0.0048 cm⁻¹, respectively.

The latest reported high-resolution FTIR studies of the formamide vapour have been on the HCONH₂ molecule. In 1999, McNaughton et al. [11] recorded the far-IR spectrum of HCONH₂

^{*} Corresponding author. *E-mail address:* augustine.tan@nie.edu.sg (T.L. Tan).

with a resolution of 0.0035 cm^{-1} in the 650–100 cm^{-1} region. They derived the rovibrational constants of the ground state, $v_{12} = 1$, v_{12} = 2, v_{11} = 1, and v_9 = 1 states up to 4 sextic constants with high accuracy. The band centers and resonance parameters of the 3 perturbing bands (v_9 , v_{11} and $2v_{12}$) were also accurately obtained. Moreover, they identified the band centers of the 12 fundamental bands and the various combination bands of HCONH₂ using a low-resolution spectrum in the 4000–200 cm⁻¹ region. In 2009, the band centers and rovibrational constants of the 4 bands (v_9 , v_{11} , v_{12} and $2v_{12}$) of HCONH₂ were largely improved by Sztraka and Horneman [12] in their FTIR study using a resolution of 0.00125 cm^{-1} in the 1060–90 cm⁻¹ region. Furthermore, in 2009, new measurements of the microwave spectrum (340-49 GHz) of HCONH₂ have been reported by Kryvda et al. [13]. A detailed analysis (including that of Coriolis interaction couplings) of the rotational spectra of v_9 , v_{11} , v_{12} and $2v_{12}$ excited vibrational states of the main isotopic species (HCONH₂) as well as of the ground states of the ¹³C, ¹⁵N, and ¹⁸O substituted species were carried out.

High-resolution FTIR spectroscopic studies on DCONH₂ remain very limited. A literature search showed that rovibrational constants of the ground state and all excited states of DCONH₂ have not been reported so far. In this work, we report the first rovibrational analysis of the unperturbed v_{12} band of DCONH₂ measured at a resolution of 0.00096 cm⁻¹ using synchrotron FTIR spectroscopy in the 350–210 cm⁻¹ region. Rovibrational constants up to two sextic terms are accurately obtained for the $v_{12} = 1$ state of DCONH₂ for the first time. Moreover, the rotational constants (*A*, *B*, and *C*) of the ground state were improved and for the first time, its rovibrational constants were accurately obtained from a simultaneous fit of the ground state combination-differences (GSCDs) which were derived from the IR transitions of the v_{12} band, and the 6 microwave transitions previously reported [7].

2. Experimental details

Liquid formamide- d_1 (DCONH₂) of 98% atomic purity in deuterium (D) was obtained from Sigma-Aldrich Corporation, DCONH₂ samples in the vapour phase were obtained by using direct lowpressure vaporization from the liquid at the ambient temperature of 296 K. The FTIR spectra of the vapour-phase DCONH₂ were measured in the 350–210 cm^{-1} region at a resolution of 0.00096 cm^{-1} using Bruker IFS 125HR Fourier transform spectrophotometer located at the THz/far-infrared beamline (beam current of about 200 mA) of the Australian Synchrotron. A liquid helium-cooled Si bolometer and 6 µm Mylar beamsplitter were used in spectral collection, which was carried out at an ambient temperature of about 296 K. The absorption cell with a 0.55 m base path length was adjusted for 44 passes to obtain a total optical path length of 24.2 m. The spectra of DCONH₂ were recorded at a vapour pressure of 0.475 mbar (mb) (measured by a capacitance pressure gauge) to ensure non-saturation of strong absorption lines. The final spectrum for the sample was produced by co-adding 130 scans with a total scanning time of about 13 h. The interferogram of the spectrum was apodized with the four-point function using a zero-filling factor of 8.

The IR absorption lines of the v_{12} band of DCONH₂ were calibrated using a total of 27 H₂O absorption lines present in the spectrum in the 500–80 cm⁻¹ region. The observed H₂O wavenumber values were fitted against standard values taken from HITRAN (2012) [14] with a relative precision of 0.00016 cm⁻¹. The average full width at half maximum (FWHM) of the lines was found to be 0.0014 cm⁻¹. The absolute uncertainty of the measured DCONH₂ lines is estimated to be about one-tenth of the linewidth, that is approximately ±0.0002 cm⁻¹ for all absorption lines in the spectrum.

3. Rovibrational analysis

The formamide- d_1 (DCONH₂) molecule is a near prolate asymmetric top with a symmetry parameter κ of approximately -0.914 and has been established to be essentially planar [10,11]. DCONH₂ belongs to the C_s point group (the molecular structure is shown in Fig. 1) and gives rise to 12 fundamental modes of vibration that are all infrared active. The v_{12} band of lowest frequency is assigned to the out-of-plane NH₂ inversion mode, having A'' symmetry.

The spectrum of the v_{12} band of DCONH₂ (Fig. 2) shows a profile characteristic of a C-type band. An intense central Q branch of the band, made up mostly of transitions belonging to ${}^{P}Q_{1}$ and ${}^{R}Q_{0}$, is located at about 289.2 cm⁻¹. The other absorption lines of $\Delta J = J'$ -J'' = 0 are situated in the *P* and *R* branches, with distinct *Q* clusters observed for $K_{a'} \ge 4$ located at regular wavenumber intervals of approximately $2A - (B + C) \approx 3 \text{ cm}^{-1}$. Besides the Q clusters, the *P* and *R* branches are made up of overlapping series located about 2A (\approx 3.6 cm⁻¹) apart and each series of transitions shares the same K_a' but differs in quantum number *J*. Within each series, absorption lines of unresolved asymmetry doublets are wellseparated by about B + C ($\approx 0.7 \text{ cm}^{-1}$). As with a C-type band (e.g. v_{12} band of HCONH₂), asymmetric splitting begins at a higher I value as K_a increases. The assignments of upper state *I*-series of ${}^{P}P_{1}$ to ${}^{P}P_{5}$ in the P branch and ${}^{R}R_{2}$ to ${}^{R}R_{6}$ and the ${}^{R}Q_{8}$ cluster in the *R* branch are shown in Fig. 3(a) and Fig. 4(a) respectively.

In the preliminary analysis of the spectrum, the ground state rotational constants (A'', B'' and C'') of DCONH₂ in Refs. [7,10] were used for both the ground and the $v_{12} = 1$ state as initial values, together with the centrifugal distortion constants reported of HCONH₂ [11,12]. The band center of the v_{12} band of DCONH₂ was first estimated to be 289.2 cm⁻¹ from the intense Q branch region of the spectrum (Fig. 2).

3.1. Upper state ($v_{12} = 1$) analysis

The approximate line positions calculated from the preliminary rovibrational constants of the ground state and $v_{12} = 1$ state of DCONH₂, and the profile of the *C*-type v_{12} band of HCONH₂ [11,12] were used as a guide in the analysis of the v_{12} band of DCONH₂. The assignment began with strong absorption lines belonging to transitions of low *J*' values of $K_a' = 4$ to 7 in the *P* and *R* branches. The ground state rovibrational constants from Refs. [7,10,12] were taken in a fitting program developed by Maki

Fig. 1. The molecular structure of formamide- d_1 (DCONH₂) (I^r representation). Note: The bond angle and bond length (Å) are taken from Ref. [8], based on the structure of formamide and its isotopologues.

Download English Version:

https://daneshyari.com/en/article/7844159

Download Persian Version:

https://daneshyari.com/article/7844159

Daneshyari.com