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ABSTRACT

The nuclear magnetic relaxation dispersion (NMRD) technique consists of measurement of the magnetic-
field dependence of the longitudinal nuclear-spin-lattice relaxation rate 1/T;. Usually, the acquisition of
the NMRD profiles is made using a fast field cycling (FFC) NMR technique that varies the magnetic field
and explores a very large range of Larmor frequencies (10 kHz < w/(27) < 40 MHz). This allows extensive
explorations of the fluctuations to which nuclear spin relaxation is sensitive. The FFC technique thus
offers opportunities on multiple scales of both time and distance for characterizing the molecular dynam-
ics and transport properties of complex liquids in bulk or embedded in confined environments. This
review presents the principles, theories and applications of NMRD for characterizing fundamental prop-
erties such as surface correlation times, diffusion coefficients and dynamical surface affinity (NMR wet-
tability) for various confined liquids. The basic longitudinal and transverse relaxation equations are
outlined for bulk liquids. The nuclear relaxation of a liquid confined in pores is considered in detail in
order to find the biphasic fast exchange relations for a liquid at proximity of a solid surface. The
physical-chemistry of liquids at solid surfaces induces striking differences between NMRD profiles of
aprotic and protic (water) liquids embedded in calibrated porous disordered materials. A particular
emphasis of this review concerns the extension of FFC NMR relaxation to industrial applications. For
instance, it is shown that the FFC technique is sufficiently rapid for following the progressive setting of
cement-based materials (plasters, cement pastes, concretes). The technique also allows studies of the
dynamics of hydrocarbons in proximity of asphaltene nano-aggregates and macro-aggregates in heavy
crude oils as a function of the concentration of asphaltenes. It also gives new information on the wetta-
bility of petroleum fluids (brine and oil) embedded in shale oil rocks. It is useful for understanding the
relations and correlations between NMR relaxation times T; and T, diffusion coefficients D, and viscosity
7 of heavy crude oils. This is of particular importance for interpreting Ty, T, 2D T;-T, and D-T;, correlation
spectra that could be obtained down-hole, thus giving a valuable tool for investigating in situ the molec-
ular dynamics of petroleum fluids. Another domain of interest concerns biological applications. This is of
particular importance for studying the complex dynamical spectrum of a folded polymeric structure that
may span many decades in frequency or time. A direct NMRD characterization of water diffusional
dynamics is presented at the protein interface. NMR experiments using a shuttle technique give results
well above the frequency range accessible via the FFC technique; examples of this show protein dynamics
over a range from fast and localized motions to slow and delocalized collective motions involving the
whole protein. This review ends by an interpretation of the origin of the proton magnetic field depen-
dence of T, for different biological tissues of animals; this includes a proposal for interpreting in vivo
MRI data from human brain at variable magnetic fields, where the FFC relaxation analysis suggests that
brain white-matter is distinct from grey-matter, in agreement with diffusion-weighted MRI imaging.
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1. Introduction

This article reviews the principles and applications of multiscale
nuclear magnetic relaxation dispersion (NMRD) techniques [1-4]
for characterizing molecular dynamics and transport properties
of complex liquids in bulk and in confinement [5,6]. Fig. 1 shows
a schematic representation of the commonly used multiscale
(time/distance) NMR techniques. Compared to the limited range
explored by the standard relaxation technique employing a single,
fixed magnetic field By, the NMRD method can report on molecular
dynamics from molecular to sub-micron sizes. The NMRD experi-
ment works by measuring the values of the longitudinal relaxation
time T; over a wide range of magnetic field strengths By. For proto-
nated liquids, nuclear spin relaxation is a stimulated (not sponta-
neous) process induced by the coupling between the nuclear
spins I=1/2 and the incoherent magnetic noise created by the
molecular dynamics of the spin-bearing molecules and their sur-
roundings. The main interest of the NMRD technique lies in
decreasing the Larmor frequency wo/27 to explore correspondingly
longer correlation times 7. of the dipolar fluctuations that are
induced by molecular dynamics and cause the spin-lattice

relaxation. This relaxation is at its most efficient around wqgt. = 1:
the available power of the random rf field is spread over a range
of frequencies that extends up to about 27/t., so when wot. < 1
that power is spread too thinly for efficient relaxation, while for
oT: > 1 the motion is too slow to generate much rf power at
the frequency wg. As a result, decreasing the magnetic field
Bo=wy/y causes the length of diffusion ¢p(wo) = +6D7; ~
/6D /wo — dpore to become sufficiently extended that translational
diffusion of an embedded liquid in porous media can reach the
average pore size dyore. The NMRD technique thus becomes a very
useful tool for studying the molecular dynamics at pore surfaces
even for a fully saturated pore system.

The NMRD data described in the papers reviewed here were
recorded using the typical fast-field-cycling FFC NMR sequences
(see Section 3 of Ref. [5]) used on a commercially available spec-
trometer from Stelar s.r.L, Mede, Italy. This instrument was really
a breakthrough in the field because the experimenters have to
make their own instruments before. Though this commercial
instrument does not have a sufficient homogeneous magnetic field
for getting high resolution NMR spectra, it is designed to obtain a
longitudinal nuclear magnetic relaxation profile. Fig. 2 displays
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