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A B S T R A C T

Nanorods grow in two possible modes during physical vapor deposition (PVD). In mode I, monolayer surface
steps dictate the diameter of nanorods. In mode II, multiple-layer surface steps dictate the diameter, which is the
smallest possible under physical vapor deposition [5,10]. This paper reports closed-form theories of terrace
lengths and nanorod diameter during the growth in mode I, as a function of deposition conditions. The ac-
companying lattice kinetic Monte Carlo simulations verify these theories. This study reveals that (1) quasi-steady
growth exists for each set of nanorod growth conditions, and (2) the characteristic length scales, including
terrace lengths and nanorod diameter at the quasi-steady state, depend on the deposition conditions – deposition

rate F, substrate temperature T, and incidence angle θ – only as a function of l2D/tan θ, with = ( )l 2D
v D

F θ2
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diffusion-limited length scale and v2D as the atomic diffusion jump rate over monolayer surface steps.

1. Introduction

The growth of crystalline nanorods through physical vapor deposi-
tion (PVD) proceeds in two possible modes. In comparison, both modes
rely on the incidence angle being glancing or oblique during the ex-
periments [1–4]. In contrast, the growth of mode I relies on monolayer
surface steps and that of mode II relies on multiple-layer surface steps to
limit the surface diffusion or mass transport [5]; and typically the
growth of mode I takes place on a wetting substrate, and that of mode II
takes place on a non-wetting substrate [6].

The growth of mode II leads to the smallest diameter of nanorods,
due to the large three-dimensional Ehrlich-Schwoebel (3D ES) diffusion
barrier over multiple-layer surface steps [7–9]. Driven by the stronger
desire of growing smaller nanorods, the theory of nanorod diameter for
growth of mode II has been formulated before that of mode I, verified
by atomistic simulations, and validated by PVD experiments [5,10].
This theory, coupled with the theory of nanorod separation [11], has
enabled the design of not only small but also well-separated nanorods,
and their experimental realization [5]. The availability of small and
well-separated metallic nanorods has in turn resulted in the technology
of metallic glue [12,13].

The growth of mode I leads to a larger diameter of nanorods than
that of mode II does, because of the smaller two-dimensional Ehrlich-
Schwoebel (2D ES) diffusion barrier over monolay-layer surface steps
[14,15]. However, this growth mode bridges with that of thin films, and
is therefore scientifically interesting [16,17]. For thin films, the wed-
ding cake model [18–20] incorporates the effects of 2D ES barriers and

builds on the BCF theory [21], but excludes the effects of non-zero
incidence angle. Incorporating the effects of non-zero incidence angle, a
recent theory shows that the growth of thin film transitions to the na-
norod growth of mode I at a critical coverage and above a critical in-
cidence angle [22]. Beyond this transition point, an important char-
acteristic length scale is the diameter of nanorods, and it is the primary
focus of this invesitgation.

This paper reports a closed-form theory of the nanorod diameter, in
terms of deposition conditions – substrate temperature (or diffusion
jump rate), deposition rate, and incidence angle of deposition flux – as
well as nanorod separation, which depends on deposition conditions
and substrate patterns. Further, this paper also reports closed-form
theories of terrace lengths, the sum of which defines the nanorod dia-
meter.

2. Theory

We first conceptually describe in Section 2.1 the framework of
theoretical formulations, in terms of (1) characteristic length scales of
interest, (2) quasi-steady state condition, and (3) number of coupled
equations vs number of physical unknowns. In Section 2.2, we present
theoretical formulations for quasi-steady state growth and numerical
results to gain insights of terrace lengths as a function of time. In
Section 2.3, we take into account the gained insights to derive ap-
proximate and closed-form theories, and numerically show the validity
of the approximation. In Section 2.4, we use lattice kinetic Monte Carlo
(KMC) simulations to verify the closed-form theories.
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The KMC simulations are for the epitaxial growth of a prototype Cu
[5,22,23]. As a brief recap of the simulations, atoms with one co-
ordination has a diffusion hopping rate of = −v v es

E kT
0

/s on flat surfaces,
= −v v eD

E kT
2 0

/D2 over monolayer surface steps, and = −v v eD
E kT

3 0
/D3 over

multiple-layer surface steps. Here, v0 is 5 × 1011 /s, Es is 0.06 eV, E2D is
0.16 eV and, E3D is 0.40 eV [7,9] and kT is the Boltzmann factor. As
discussed in Ref. [24], in order to have a comparable length scale of
surface islands as in three dimensions under typical room temperature
of 300 K and typical deposition rate of 1 nm/s, the substrate tempera-
ture in two-dimensional simulations needs to be choosen around 100 K.

2.1. Conceptual framework

Based on experimental observations [1–4], and as shown later by
KMC simulations, the mode I growth of nanorods will reach a quasi-
steady state. Fig. 1(a) illustrates the top section of nanorods at quasi-
steady state – a wedding cake like top surface is bounded by multiple-
layer surface steps on both sides, in two dimensions or 1+ 1

dimensions. At quasi-steady state, the entire top surface grows taller by
one layer during one growth period τ, with the starting and the ending
top surface morphologies identical. For the terraces below the top layer,
the periodic change of the lengths is similar to the layer-by-layer
growth of thin film [25]. Shown in Fig. 1(b) and (c) are the expanded
views of the boxed area of Fig. 1(a). At time zero, a nucleus of math-
ermatically zero dimension forms on the top layer; and at time τ, the
top surface grows taller by one layer and a nucleus forms again on the
top; Fig. 1(c). During the time period from 0 to τ, the first step advances
so that x1 becomes zero at time τ0; Fig. 1(b). As growth continues with
time from τ0 to τ, the surface morphology returns to that at time zero
but the entire surface grows one layer taller; Fig. 1(c).

As shown in Fig. 1(b), during the time between 0 and τ there are n
monolayer surface steps and n terraces, plus one island above the n-th
terrace. Accordingly, there are n+1 lengths x1, x2, …, xn, and xt,
characterizing the dimensions of the terraces and the top island. There
are also n+1 rate equations that govern the evolution of x1, x2, …, xn,
and xt as a function of time. Solution of the n+1 rate equations with
boundary conditions gives rise to the terrace length l1, l2, …, and ln at
time zero, in terms of τ0 and τ; the corresponding lt is zero. We use the
term of boundary condition instead of initial condition here since the
condition is not for the start of time. To eliminate τ0 and τ in the so-
lutions, two additional equations are necessary. One of the two addi-
tional equations is for the critical nucleation size during growth, and
the other for the mass conservation. Once the terrace lengths – l1, l2, …,
and ln – are determined, their sum defines the diameter Lm as
2(l1+ l2…+ ln).

2.2. General theory

Our formulations start with the length of the first terrace x1; in this
paper, length is in the unit of atomic diameter. At time zero, the lowest
trajectory of source atoms cannot reach below the first terrace.
Otherwise, the growth would not be in quasi-steady state, because Lm
would continue to increase. As shown in Fig. 2, source atoms that go
through AB and AC will contribute to the advancement of the first step.
The length of AB is simply x1. However, the length of AC is Y and it
changes with time t. We assume that Y linearly decreases with time and
it goes to 0 at τ0. As we will see later in Section 2.3, under quasi-steady
state terrace lengths increase linearly with time, and the longer terraces
lead to linear decrease of Y. That is, Y=(τ0− t)/τ. The initial vaule of
Y is now a parameter τ0/τ. Ignoring the inter-step diffusion as in the
previous formulations [22], we have:
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Here, we have assumed that the deposition flux from the left does
not reach the terraces on the right side of the nanorod. As shown later
in Fig. 3, this assumption is valid for all the terraces except the top two.
With the boundary condition that x1 is 0 at t ≥ τ0, the solution of
Eq. (1) is:
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At time zero, when a new layer nucleates on the top island, the
length of the first terrace is l1:

Fig. 1. (a) Schematic of nanorod morphologies at quasi-steady state, (b) surface
morphology from time zero shown as solid to τ0 with newly grown region
shown as meshed blue, and (c) surface morphology from time τ0 to τwith newly
grown region shown as meshed tan. The ith step and the ith terrace of length xi
are marked by solid lines, to illustrate their relative positions. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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