Accepted Manuscript

Formation and Thermal Stability of Subsurface Deuterium in Ni (110)

Yuxin Yang, Michelle S. Hofman, Bruce E. Koel

PII: S0039-6028(18)30137-7 DOI: 10.1016/j.susc.2018.04.001

Reference: SUSC 21226

To appear in: Surface Science

Received date: 8 February 2018 Revised date: 27 March 2018 Accepted date: 2 April 2018

Please cite this article as: Yuxin Yang, Michelle S. Hofman, Bruce E. Koel, Formation and Thermal Stability of Subsurface Deuterium in Ni (110), *Surface Science* (2018), doi: 10.1016/j.susc.2018.04.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Highlights

- The uptake and thermal desorption of deuterium on a Ni(110) surface has been measured using incident gaseous D₂ molecules, D atoms, and D₂⁺ ions.
- Molecular D₂ exposures on a Ni(110) surface at 90 K under UHV conditions does not populate subsurface deuterium binding states, but incident D atoms and D₂⁺ ions do.
- The temperature of the D₂ thermal desorption peak arising from subsurface deuterium is dependent on the energy of the incident deuterium species.
- The thermal stability and D₂ TPD peaks from subsurface D atoms are nearly the same at Ni(110) and Ni(111) surfaces.

Download English Version:

https://daneshyari.com/en/article/7844750

Download Persian Version:

https://daneshyari.com/article/7844750

Daneshyari.com