Accepted Manuscript

Effects of an electric field on the adsorption of water molecules on the Cd(0001) surface

Yu-Bing Tu, Min-Long Tao, Kai Sun, Jun-Zhong Wang

PII: S0039-6028(17)30637-4 DOI: 10.1016/j.susc.2017.10.012

Reference: SUSC 21114

To appear in: Surface Science

Received date: 29 August 2017 Revised date: 11 October 2017 Accepted date: 12 October 2017

Please cite this article as: Yu-Bing Tu , Min-Long Tao , Kai Sun , Jun-Zhong Wang , Effects of an electric field on the adsorption of water molecules on the Cd(0001) surface, *Surface Science* (2017), doi: 10.1016/j.susc.2017.10.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effects of an electric field on the adsorption of water molecules on

the Cd(0001) surface

Yu-Bing Tu, Min-Long Tao, Kai Sun, Jun-Zhong Wang*

School of Physical Science and Technology, Southwest University, Chongqing 400715, China

ABSTRACT: The adsorption of water molecules on the Cd(0001) surface has been

systematically investigated in the absence or presence of the electric field using first

principles calculations based on density functional theory. It has been determined that the

adsorption is enhanced by the electric field. From the geometries and energetics, we find that

the water-cadmium interaction become stronger (weaker) under a negative (positive) field in

the adsorbed monomer. Otherwise, the formation of the hydrogen bonds makes it difficult for

molecules in the water clusters to response the electric field. Most importantly, the stability of

the water bilayers depends on the strength of the negative electric field. Instead of the H-up

bilayer, the H-down bilayer is more stable when the negative field is sufficiently strong. In

this case, the dipole-field interaction is the dominant interaction in the change of stability.

These results are helpful in the understanding of the fundamental processes at the

water-electrode interfaces.

Keywords: water adsorption; electric field; cadmium electrode;

* E-mail: jzwangcn@swu.edu.cn

1

Download English Version:

https://daneshyari.com/en/article/7844865

Download Persian Version:

https://daneshyari.com/article/7844865

<u>Daneshyari.com</u>