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a b s t r a c t 

Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting 

temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown 

the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The 

model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface 

energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of 

surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive 

properties of single-crystal surfaces. 

The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the 

data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is 

used in calculations using quantum chemistry or modeling by molecular dynamics. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Melting of solids is a well-studied example of the phase transition of 

the first kind. However at present there has not been created a unified 

melting process theory describing the mechanism and driving forces of 

the macro- and micro-level phenomena that occur in this transformation 

phase. Ubbelohde suggested that the crystal melting starts on its surface 

because of the energy excess stored as a surface energy. Herewith the 

surface melting temperature of crystallographically different surfaces 

must differ from each other due to the differences in the specific surface 

energy values of these surfaces [1] . The Ubbelohde model assumes a 

difference in the melting temperatures of crystallographically different 

surfaces, which should lead to a change in the shape of the crystals at 

a temperature close to the melting point. However, this phenomenon 

was not found experimentally. Based on Lindemann’s criterion Zangwill 

came to the conclusion on the layer-by-layer melting of a crystal because 

of the increased amplitude of the surface atoms vibrations compared to 

the crystal bulk atoms [2] . However, the Zangvill model considered only 

a monatomic surface layer of atoms, without considering the differences 

in the amplitude of the vibrations of surface atoms on crystallographi- 

cally different surfaces of the crystal. At present numerous experiments 

data and model calculations have confirmed the irregularity of crystal 

melting start and proved the existence of the surface melting of crystals 

[3–6] . 
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In this study we consider the model of coordination melting of crystal 

(MCM). According to this model, the surface layer of a crystal begins to 

melt at a temperature lower than the bulk melting temperature for this 

substance due to the presence of surface energy [7,8] . It is assumed 

that the minimum thickness of the melt surface layer is equal to the 

thickness of the first coordination sphere of atoms (molecules) in the 

given crystallographic direction. 

This model is based on the energy criterion of crystal melting, ac- 

cording to which the melting of crystals begins at the moment of accu- 

mulation of internal energy equal to the enthalpy of the crystal at the 

melting point, regardless of the form of energy storage [9] . 

2. Material and methods 

It is known that the enthalpy change when the crystal is heated to 

the melting point is: 

ΔH = ∫
T m 

0 
C p ⋅ dT (1) 

where C p is thermal capacity of the crystal, Т m 

- melting temperature, 

H - enthalpy. We take the value of the enthalpy at the melting tempera- 

ture as an “energy criteria ” of the crystal transition into an amorphous 

phase independently of the way it gets that. In case this is a cracking 

process, then, considering that the mechanic energy is realized in in- 

creasing the crystal total surface energy Σ𝜎hkl during its dispersion, we 

can suppose the moment of amorphisation comes when Σ𝜎hkl becomes 
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equal ΔH when the crystal is at 0 К, or 

ΔH 

∗ = ∫
T m 

T 
Cp ⋅ dT 𝑖𝑓 T < T m (2) 

Having done such a supposition we can evaluate the critical size of 

the crystal that is special for its transition into the amorphous state. 

As a first approximation we shall consider cracking of the crystal into 

separate cubic crystals. The full surface energy of one of these crystals 

is 

E = L 2 ⋅
∑6 

𝑖 =1 
𝜎𝑖 (3) 

where L is the crystal linear size, and 𝜎i - the specific surface energy of 

the surfaces i. For cubic symmetric crystals this expression is taken as: 

E = 6 L 2 ⋅ 𝜎hkl (4) 

where 𝜎hkl is the specific surface energy of the surfaces (hkl) of the given 

crystal. 

Using the main supposition we get the expression characterizing the 

transition of the crystalline phase into the amorphous one at an arbitrary 

temperature [9] : 

k ⋅ ∫
T m 

T 
Cp ⋅ dT = L 2 ⋅

∑6 
𝑖 =1 

𝜎𝑖 (5) 

where k — molar coefficient that is equal to the number of grains in the 

mole of the substance (k = L 3 / V, V = M/ 𝜌 – the mole volume, M –atomic 

weight, 𝜌 - density of the crystal). From Eq. (5) the minimum linear size 

of the crystal cubic grain is easily evaluated at T < Т m 

, further decreasing 

of it takes it to the amorphous phase: 

L = V ⋅
(∑6 

𝑖 −1 
𝜎𝑖 

)
∕ ∫

T m 

T 
𝐶 𝑝 ⋅ dT (6) 

Suppose that the melting begins with the transition into the surface 

layer melt, with thickness - L hkl is equal to the thickness of the first 

coordination sphere of atom in this crystallographic direction [7] . For 

the crystals with lattices of the BCC, F СС and HCP types this thickness is 

equal to the double interlayer distance in this crystallographic direction 

[7,8] : 

Pm 3m , Z = 1 ∶ L 100 = 2a; L 110 = a 
√
2; L 111 = 2a∕ 

√
3 (7) 

Im 3 m , Z = 2 ∶ L 100 = a; L 110 = a 
√
2 ; L 111 = a∕ 

√
3 (8) 

Fm 3 m , 𝑍 = 4 ∶ L 100 = a; L 110 = a∕ 
√
2 ; L 111 = 2a∕ 

√
3 (9) 

Fd 3m , Z = 8 ∶ L 100 = 0 , 5a; L 110 = a∕ 
√
2; L 111 = 2a∕ 

√
3 (10) 

3. Theory/Calculation 

Consider the value of the internal energy of one mole of the surface 

layer with the thickness of the first coordinate sphere in the direction 

[hkl] by the moment of the crystal melting. It can be evaluated according 

to the formula: 

U 1 = 

( 

S ⋅ L hkl ⋅ 𝜌
M 

) 

⋅ ∫
Tm 

0 
C p dT + 𝜎hkl ⋅ S + U 0 (11) 

where ( S ⋅L ℎ𝑘𝑙 ⋅𝜌M 

) – mole coefficient that is equal to the layer volume di- 

vided by one mole volume, Т m 

– the crystal melting temperature, C p –

its thermal capacity at 298 K, U 0 – internal energy at 0 K, 𝜌 – its den- 

sity, M –atomic weight, S – surface area (hkl), L hkl – the thickness of the 

first coordinate sphere towards [hkl], and 𝜎hkl – the value of the specific 

surface energy (hkl). 

To simplify the calculations we shall ignore the temperature depen- 

dences of 𝜌, L hkl and C p , considering them as constants. 

Let us consider the same layer separated from the crystal at 0 K. Such 

layer has a long-range ordering only in two independent directions in- 

side the layer, and in the direction which is perpendicular to the layer 

the atom arrangement ordering is limited with the thickness of the first 

coordination sphere. Physically this layer is not already in the crystalline 

state, it is in the state of transition from crystal into liquid. The internal 

energy saved in this layer is: 

U 2 = 2 𝜎hkl ⋅ S + U 0 (12) 

In both cases (11) and (12) the energy values show the start of transi- 

tion of the same crystalline substance amount into liquid state. Equating 

them to each other we get the formula for the crystalline substance sur- 

face energy calculation according to the MCM: ( 

S ⋅ L hkl ⋅ 𝜌
M 

) 

⋅ ∫
T m 

0 
C p dT+ 𝜎hkl ⋅ S+ U 0 = 2 𝜎hkl ⋅ S+ U 0 (13) 

or 

σhkl = 

( 

L hkl 
M 

⋅ 𝜌
) 

⋅ ∫
T m 

0 
C p dT (14) 

The obtained formula makes it possible to calculate the anisotropy 

of the surface energy on crystallographically different surfaces of the 

crystal without complicated, labor-intensive calculations with limited 

capacity applying the quantum chemistry and molecular dynamics sim- 

ulation [7] . Since L hkl is constant for a given spatial symmetry group, 

it follows the formula (14) , that the anisotropy of the surface energy is 

constant for all metals that crystallize in the same structural type. 

4. Results 

4.1. Calculation of values of specific surface energies of metals 

We calculate the surface energy of a number of metals from the 

model of coordination melting of crystals (formula 14 ). 

Table 1 gives the specific surface energy values calculated with the 

MCM, in comparison with the other theoretical results. 

As we can see from Table 1 , the anisotropy of the surface energy 

calculated with the MCM is constant for a given symmetry of the crystal 

structure of metals, in contrast to the other calculations available in the 

literature, which confirms its plausibility. An exception is the calculation 

of the anisotropy of the surface energy from Caglioti et al. [ 12 ], which 

generally confirms our calculations. 

Fig. 1 shows the maximum values of the surface energies of a number 

of metals, calculated with the MCM and from other literature data. 

It should be noted that the values of the specific surface energy ob- 

tained by different authors often differ from each other for more than 

20%. Therefore, the values of the specific surface energy of different 

faces should be judged by its anisotropy. 

Table 2 shows the anisotropy values of the specific surface energy 

calculated with the MCM compared to the experimental and other theo- 

retical values. It can be seen from Table 2 that the anisotropy calculated 

with the MCM and obtained experimentally coincides completely. 

The correctness of our calculations of the anisotropy of surface ener- 

gies is confirmed by the calculated data of Caglioti et al. [12, 13] and the 

experimental values of the anisotropy of the surface energy from Nelson 

and co-workers [14,15] (see Tables 1 and 2 ). As can be seen from the 

Table 2 , the anisotropy calculated by us coincides with the anisotropy 

obtained experimentally and calculated from Caglioti et al. [12,13] but 

the anisotropy calculated from Wang and Wang [11] contradicts the 

experimental value [14] . 

4.2. The connection of surface energy with the habit of crystals 

It has turned out that faceting of natural crystals mostly correlated 

with the calculated specific surface energy values, and the maximum 

specific surface energy values comply with the most developed faces 

[16] . In Table 3 it is shown that the anisotropy of the surface energy 
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