

Available online at www.sciencedirect.com

surface science reports

Surface Science Reports 71 (2016) 547-594

www.elsevier.com/locate/surfrep

Positrons in surface physics $\stackrel{\leftrightarrow}{\sim}$

Christoph Hugenschmidt

FRM II and Physik-Department E21, Technische Universität München, Lichtenbergstraße 1, 85748, Germany

Received 9 June 2016; received in revised form 9 June 2016; accepted 24 September 2016 Available online 4 October 2016

Abstract

Within the last decade powerful methods have been developed to study surfaces using bright low-energy positron beams. These novel analysis tools exploit the unique properties of positron interaction with surfaces, which comprise the absence of exchange interaction, repulsive crystal potential and positron trapping in delocalized surface states at low energies. By applying reflection high-energy positron diffraction (RHEPD) one can benefit from the phenomenon of total reflection below a critical angle that is not present in electron surface diffraction. Therefore, RHEPD allows the determination of the atom positions of (reconstructed) surfaces with outstanding accuracy. The main advantages of positron annihilation induced Auger-electron spectroscopy (PAES) are the missing secondary electron background in the energy region of Auger-transitions and its topmost layer sensitivity for elemental analysis. In order to enable the investigation of the electron polarization at surfaces low-energy spin-polarized positrons are used to probe the outermost electrons of the surface. Furthermore, in fundamental research the preparation of well defined surfaces tailored for the production of bound leptonic systems plays an outstanding role. In this report, it is envisaged to cover both the fundamental aspects of positron surface interaction and the present status of surface studies using modern positron beam techniques. © 2016 Elsevier B.V. All rights reserved.

Keywords: Polarized positron beams; Positron diffraction; Positron annihilation induced Auger-electron spectroscopy; Positronium; Reconstructed surfaces; Adatoms

Contents

1.	Introd	luction
2.	Low-e	energy positron beams
	2.1.	Fundamental concepts
	2.2.	Positron sources
		2.2.1. β^+ emitters

[†]Fully documented templates are available in the elsarticle package on CTAN.

E-mail address: christoph.hugenschmidt@frm2.tum.de

http://dx.doi.org/10.1016/j.surfrep.2016.09.002 0167-5729/© 2016 Elsevier B.V. All rights reserved.

Acronyms: ACAR, Angular correlation of annihilation radiation; AES, Auger-electron spectroscopy; AMOC, Age-MOmentum Correlation; APECS, Auger photo-electron coincidence spectroscopy; ARPES, Angle-resolved photo emission spectroscopy; BEC, Bose–Einstein condensate; CDBS, Coincident Doppler-broadening spectroscopy; CISP, Current-induced spin polarization; CMM, Corrugated mirror model; cps, counts per second; DBS, Doppler-broadening spectroscopy; DFT, Density functional theory; EAES, Electron induced Auger-electron spectroscopy; FWHM, Full width at half maximum; IMFP, Inelastic mean free path; LEED, Low-energy electron diffraction; LEPD, Low-energy positron diffraction; MCP, Micro-channel plate; ML, MonoLayer; NEPOMUC, NEutron induced Auger-electron spectroscopy; PAS, Positron annihilation spectroscopy; PAES, Positron annihilation induced Auger-electron spectroscopy; PAS, Positron annihilation spectroscopy; PAES, Positron annihilation induced Auger-electron spectroscopy; STR, Seanning tunneling spectroscopy; SXRD, Surface X-ray diffraction; TEM, Transmission electron microscope; TOF, Time of flight; TRHEPD, Total reflection high-energy positron diffraction; UHV, Ultra high vacuum; UPS, Ultraviolet induced photo-electron spectroscopy; XAES, X-ray induced Auger-electron spectroscopy; XAES, X-ray induced Auger-electron spectroscopy; XRD, X-ray diffraction;

		2.2.2.	Pair production	552		
	2.3.	3. Moderation				
	2.4.	Positron	beam setups	554		
		2.4.1.	Tabletop positron beams	554		
		2.4.2.	Micro-beams	554		
		2.4.3.	Pulsed beams	555		
		2.4.4.	Trap-based beams	555		
		2.4.5.	Spin-polarized beams	556		
3.	Positi	rons at th	e surface	556		
	3.1. Positrons in matter			556		
	3.2.	Positron	is reaching the surface	558		
	3.3.	Conside	ration of the energetics of surfaces	558		
	3.4.	density on Al(100) as a show-case	559			
4.	Tailo	red surfac	tes for fundamental experiments.	560		
	4.1.	Cold po	sitronium	560		
	4.2.	Positron		562		
_	4.3.	Molecul	es and Bose-Einstein condensate of Ps	563		
5.	Positi	ron diffra	ction	564		
	5.1.	Basic pi	rinciples of positron diffraction	564		
	5.2.	First LE	PD experiments	566		
		5.2.1.	LEPD and LEED on CdSe surfaces	566		
		5.2.2.	Surface relaxation at GaAs and InP	566		
	5.3.	Reflection	on high-energy positron diffraction (RHEPD)	567		
		5.3.1.	Principle and features of RHEPD.	567		
		5.3.2.	First RHEPD experiments: H-terminated Si(111)	569		
		5.3.3.	Surface dipole barrier	569		
		5.3.4.	RHEPD on Si(111)-7 \times 7 as ideal example	569		
		5.3.5.	Determination of surface structures	570		
		5.3.6.	One-dimensional systems on surfaces	573		
6	р .,	5.3.7.		5/5		
6.	POSIU	ron annin	nation induced Auger-electron spectroscopy.	5/5		
	0.1.			570		
		0.1.1.	Challenges	5/6		
	60	0.1.2. Surface	challenges	570		
	0.2.	Surface	Studies with PAES	5/8		
		0.2.1.	Adverted leaves on Co	570		
		0.2.2.	Adsorbed layers on Cu.	5/9		
		0.2.3.	Cover layers in the systems Cu/Fe, Cu/Fd and Ni/Fd.	501		
		0.2.4.		582		
		0.2.5.		582		
7	Cf.	0.2.0.	PAES studies on semiconductor surfaces	383		
7. Surface studies using spin-polarized positrons		ce studies		584		
	7.1.	Application	tions of spin palerized position beens	504 504		
	1.2.	Applica	uons of spin-polarized position beams.	504		
		7.2.1.		505		
		1.2.2.	Charge to spin conversion and spin diffusion	383 502		
0	Cont	1.2.3.	Charge-to-spin conversion and spin diffusion	J00 502		
0.	COIIC.	iusion and		507		
Ар		A	I nacitran amittara	507		
	A.I.	Selected	I position ennuers	38/ 500		
	A.2.	Coloul-	w of position sources at large-scale facilities	300 500		
A.S. Calculated cole-annihilation probabilities						
Kel	References					

1. Introduction

In surface science the structure and elemental composition ideally of the topmost atomic layer of a solid and all kinds of

phenomena related to the surface are subject of most research activities. For this a zoo of well-known standard analysis tools based on spectroscopic, microscopic, scattering and diffraction methods are commonly applied. Download English Version:

https://daneshyari.com/en/article/7845021

Download Persian Version:

https://daneshyari.com/article/7845021

Daneshyari.com