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Abstract

Nanostructured materials offer the possibility to tailor light-matter interaction at scales below the wavelength. Metallic nanostructures benefit
from the excitation of surface plasmons that permit light concentration at ultrasmall length scales and ultrafast time scales. The local density of
states (LDOS) is a central concept that drives basic processes of light—matter interaction such as spontaneous emission, thermal emission and
absorption. We introduce theoretically the concept of LDOS, emphasizing the specificities of plasmonics. We connect the LDOS to real
observables in nanophotonics, and show how the concept can be generalized to account for spatial coherence. We describe recent methods
developed to probe or map the LDOS in complex nanostructures ranging from nanoantennas to disordered metal surfaces, based on dynamic
fluorescence measurements or on the detection of thermal radiation.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Plasmonics couples surface plasmon excitations [1,2] with
nanostructures in view of enhancing and controlling light
emission and absorption at small length and time scales. This
field of research has become an important branch of nano-
optics [3,4], and several reviews have been published, describ-
ing developments towards applications in integrated subwave-
length photonics [5-7], light concentration and manipulation at
the nanoscale [8—10] including the design of optical antennas
[11], active [12] and quantum plasmonics [13]. Our goal here
is not to present another review of the field of plasmonics, but
rather to revisit fundamental aspects based on the unifying
concept of density of states. Measuring and engineering
the electromagnetic local density of states (LDOS) in plasmo-
nic structures is a major issue, since the LDOS drives basic
processes of light—matter interaction such as spontaneous
emission (fluorescence), thermal emission and absorption.
New possibilities are emerging for the design of efficient
sources and absorbers of visible and infrared radiation, for
optical storage and information processing with ultrahigh
spatial density, or for the development of nanoscale markers
for biomedical imaging and therapy. In the last decade,
methods have emerged that enable us to map the LDOS on
nanostructured surfaces, or to engineer the LDOS in order to
control light emission by single quantum sources. On the

theoretical side, the concept of LDOS itself has been clarified
to better account for specific features of the optics of metal
surfaces, for example regarding the electric and magnetic
contributions, or the splitting into radiative and non-radiative
components. The purpose of this review article is to give a
self-contained presentation of the concept of LDOS and of the
connection between the LDOS and real observables in optics,
and a state-of-the-art description of the methods permitting to
probe or map the LDOS in real structures (from nanoantennas
to complex disordered surfaces). The extension of the concept
of density of states to include a description of spatial
coherence, through the introduction of a cross density of states
(CDOS), is also introduced. The concepts of LDOS and CDOS
allow us to connect different aspects of plasmonics in complex
structured geometries. They also help establishing connections
with other fields of wave physics, in which wave-matter
interaction is controlled by similar quantities.

2. Electromagnetic local density of states
2.1. Non-absorbing closed cavity: a canonical example

The concepts of density of states (DOS) and local density of
states (LDOS) can be introduced starting from the textbook

situation of a non-absorbing and non-dispersive medium
embedded in a closed cavity with volume V = L? (it is usually
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