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a b s t r a c t 

The energy/sec transmitted and reflected by a flat dielectric slab embedded in an absorbing host medium 

was calculated for normal plane wave incidence. It was found that the outgoing scattered energy/sec dif- 

fers from the incoming energy/sec carried by the incident beam. This apparent energy nonconservation 

is compensated exactly by the energy/sec of the standing wave interference of the incoming plane wave 

with the outgoing reflected wave evaluated at the surface of the slab. This interference energy/sec, also 

known as extinction for this one-dimensional scattering situation, oscillates between positive and nega- 

tive values as a function of slab thickness, in analogy to a similar effect recently predicted for scattering 

by a dielectric sphere embedded in an absorbing host medium. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Over the last few decades, scattering of light by a dielectric 

sphere embedded in an absorbing host medium has attracted con- 

siderable attention [1–16] . In particular, there has been much dis- 

cussion concerning the relative merits and physical interpretation 

of a number of different definitions of extinction for this system. 

These approaches differ in that (i) the incident and scattered fields 

are evaluated in the scattering far-zone, (often called apparent ex- 

tinction) [1,3,9,11] , (ii) or they are evaluated on the particle surface, 

(often called inherent extinction) [5,6,8,9] , (iii) or they make use of 

the optical theorem [17] generalized to scattering in absorbing host 

medium [2,13,18] . Extinction has been considered as a single mea- 

surement made with the scattering particle present [1,6,8] , or as 

the difference between two measurements made with and without 

the particle present [2,3,5,13–18] . Some past studies have argued 

that in certain regions of parameter space the extinction cross sec- 

tion can be less than the scattering cross section, or even negative 

[1,3,9,14,16] . There has been some discussion as to whether such 

a result is physical or not, and if it is, what interpretation can be 

given to it. 

This study attempts to answer this question by considering a 

much simpler scattering system that also can be interpreted as 

having seemingly negative extinction. Based on the many similari- 

ties between scattering of a plane wave by a spherical particle and 

by a flat slab ([19], pp.42,43 of [20] , and [21] ), the subject of this 

study is the interaction of a normally incident plane wave with 

a transversely infinite dielectric slab embedded in an absorbing 

host medium. This is the converse of the well-known geometry 
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of a plane wave normally incident on a transversely infinite ab- 

sorbing slab embedded in a dielectric host medium (see Section 

18.5 of [22] , Section 13.4.1 of [23] , and Sections 14.1 and 14.2 of 

[24] ). The system examined here has the advantages that it is one- 

dimensional, it is exactly analytically soluble, the scattered wave 

consists only of direct reflection in the backward direction, direct 

transmission in the forward direction, transmission and reflection 

following all numbers of internal reflections, and the form of the 

fields is exactly the same near the slab surface and far from it. 

In the treatment given here, the incident and scattered energy is 

evaluated at the slab surfaces, analogous to inherent extinction for 

scattering by a sphere [9] . 

A significant difference between the sphere and slab scattering 

problems is that it is standardly assumed for the sphere problem 

that both the incoming and scattered fields are present everywhere 

in space exterior to the sphere (see Section 9.2 of [25] and [26] ). 

On the other hand, it is standardly assumed for the slab prob- 

lem that the incoming beam is removed by the scattering process, 

and is replaced by the outgoing scattered fields (see pp.394–395 

of [22] , and pp.396–398 of [27] ). This difference can be motivated 

as follows. For scattering of a plane wave or a focused Gaussian 

beam by a spherical particle, the beam fields and scattered fields 

substantially overlap with destructive interference in the scattering 

near-zone, producing the deep shadow of the particle (see Fig. 7.7 

of [28] ). But they become easily separable as a function of scatter- 

ing angle in the far-zone because of their differing angular spread- 

ing due to diffraction. On the other hand, both the incident plane 

wave and the slab are assumed to be of infinite transverse extent. 

Thus there is no angular separability of the incident and transmit- 

ted waves, and they totally overlap everywhere in the half-space 

behind the slab. Since the sum of the two waves is observed on a 

close or distant viewing screen, it is sensible and practical to call 
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the observed total wave “the transmitted wave” . The consequences 

of artificially decomposing the transmitted wave into the sum of 

an incident wave plus an effective transmitted wave are discussed 

at the end of Section 4b . In what follows, we assume the incident 

beam and reflected wave are present on the illuminated side of the 

slab, and only the transmitted wave is present on the shadowed 

side. This difference from that of scattering by a sphere causes cer- 

tain terms in the energy balance equation that were important for 

the sphere problem to vanish for the slab problem. Conversely, cer- 

tain terms that vanished for the sphere problem are now of central 

importance to the slab problem. 

For scattering of a normally incident plane wave by a trans- 

versely infinite dielectric slab embedded in an absorbing medium, 

the energy/sec transmitted and reflected by the slab is found to 

alternately be either greater than or less than the energy/sec inci- 

dent on it as a function of slab thickness. This apparent noncon- 

servation of energy is exactly compensated by the energy/sec car- 

ried by the standing wave interference of the incident and reflected 

waves in the illuminated region of the absorbing host medium. 

This interference carries no energy when the host medium is a 

dielectric, and does so only when the host medium is absorbing. 

A similar incident/reflected wave interference has been noted and 

discussed for scattering by a sphere embedded in an absorbing 

medium [2,13] , and in the modeling of the Van Allen radiation 

belts [29] . 

The body of this study proceeds as follows. The energy balance 

equation is derived in Section 2 . Transmission and reflection of a 

normally incident plane wave at the interface between a dielectric 

medium and an absorbing medium is briefly reviewed in Section 3 . 

Section 4a then briefly reviews the well-understood case of a plane 

wave normally incident on an absorbing slab in a dielectric host 

medium. The transmission and reflection amplitudes of the slab 

are expressed in terms of the single-interface amplitudes of Section 

3 . These results obtained in Section 4a are of great use in interpret- 

ing and understanding the results of Section 4b , which analyzes 

the situation of current interest, namely a plane wave normally in- 

cident on a dielectric slab embedded in an absorbing host medium. 

The total transmission and reflection amplitudes for this geometry 

are obtained, and the terms contributing to the energy balance are 

discussed. Lastly, in Section 5 the interpretation of extinction is re- 

considered and extended in light of the results of Section 4b . 

2. Scattering and energy conservation 

The treatment of energy conservation discussed in this section 

is an extension of that of pp.69–70 of [20] . Consider a volume V 

bounded by the surface A centered on the origin of coordinates. 

The surface has the outward normal n , and the volume may or 

may not contain sources or sinks of electromagnetic energy. If 

E total and B total are the total complex electric and magnetic fields 

in the vicinity of V , and μ0 is the permeability of free space, then 

W abs = − ( 1 / μ0 ) Re 

[
∫ 
A 

( E total × B total ∗) · n d 

2 r 

]
(1) 

is the net electromagnetic energy/sec absorbed within the volume. 

The asterisk in Eq. (1) indicates complex conjugation, and the neg- 

ative sign in front of the surface integral gives the convention that 

a sink of electromagnetic energy is considered to be positive. 

If an electromagnetic beam passes through a volume containing 

no electromagnetic sources or sinks, such as a dielectric homoge- 

neous medium, then 

E total = E beam 

(2a) 

B total = B beam 

, (2b) 

and 

0 = W beam 

(3) 

where 

W beam 

= − ( 1 / μ0 ) Re 

[
∫ 
A 
( E beam 

× B beam 

∗) · n d 

2 r 

]
. (4) 

If the beam fields are exactly known, as is the case for a 

plane wave, the integral can be evaluated exactly, thus verifying 

Eq. (3) . But if the beam is known in terms of a partial wave sum 

of transverse electric (TE) and transverse magnetic (TM) spherical 

multipole waves multiplied by beam shape coefficients, the beam 

fields can be written as a sum of incoming and outgoing portions 

[30,31] that become proportional to exp(-i kr ) and exp(i kr ), respec- 

tively as r → ∞ , 

E beam 

= E beam 

in + E beam 

out (5a) 

B beam 

= B beam 

in + B beam 

out 
. (5b) 

This gives an implicit time-domain description of beam propa- 

gation, i.e. the beam first enters the volume V , and then afterward 

it leaves it. With this interpretation, Eq. (3) becomes 

0 = W beam 

= W beam 

in − W beam 

out + W beam 

cross (6) 

where 

W beam 

in = − ( 1 / μ0 ) Re 

[
∫ 
A 

(
E beam 

in × B beam 

in ∗
)

· n d 

2 r 

]
(7a) 

W beam 

out = ( 1 / μ0 ) Re 

[
∫ 
A 

(
E beam 

out × B beam 

out ∗
)

· n d 

2 r 

]
(7b) 

W beam 

cross = − ( 1 / μ0 ) Re { ∫ 
A 

[ 
(
E beam 

in × B beam 

out ∗
)

+ 

(
E beam 

out × B beam 

in ∗
)
] · n d 

2 r} . (7c) 

The quantity W beam 

in is the incoming energy/sec of the beam 

which is positive, W beam 

out is the outgoing energy/sec which is 

also positive, and W beam 

cross is a surface integral over the stand- 

ing wave interference of the incoming and outgoing portions of the 

beam. For a plane wave in a dielectric medium, the triple product 

of the incoming and outgoing beam fields and the unit normal in 

Eq. (7c) is zero, and for a more general beam, the triple product is 

purely imaginary. Both cases give W beam 

cross = 0, so that 

W beam 

in = W beam 

out (8) 

in agreement with Eq. (3) . 

A particle of arbitrary shape and refractive index is now placed 

at the origin of coordinates in a dielectric medium. An incident 

electromagnetic beam is scattered by it. The total fields are now 

standardly taken to be 

E total = E beam 

+ E scatt 
out (9a) 

B total = B beam 

+ B scat 
out 

, (9b) 

where the scattered fields are purely outgoing and the beam fields, 

as in Eqs. (2a) and (2b ), are those that would be present in the 

absence of the particle. Substitution into Eq. (1) gives 

W abs 
particle = W beam 

− W scatt 
out + W ext inct ion (10) 

where W abs 
particle is the energy/sec absorbed by the particle, W beam 

was given in Eqs. (4),(6) and (7) and 

W scatt 
out = ( 1 / μ0 ) Re 

[
∫ 
A 

(
E scatt 

out × B scatt 
out ∗

)
· n d 

2 r 

]
(11a) 
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