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a b s t r a c t 

Based on the generalized multi-particle Mie equation (GMM) and Electromagnetic Momentum (EM) the- 

ory, the lateral binding force (BF) exerted on bi-sphere induced by an arbitrary polarized high-order 

Bessel beam (HOBB) is investigated with particular emphasis on the half-conical angle of the wave num- 

ber components and the order (or topological charge) of the beam. The illuminating HOBB with arbi- 

trary polarization angle is described in terms of beam shape coefficients (BSCs) within the framework 

of generalized Lorenz-Mie theories (GLMT). Utilizing the vector addition theorem of the spherical vec- 

tor wave functions (SVWFs), the interactive scattering coefficients are derived through the continuous 

boundary conditions on which the interaction of the bi-sphere is considered. Numerical effects of various 

parameters such as beam polarization angles, incident wavelengths, particle sizes, material losses and 

the refractive index, including the cases of weak, moderate, and strong than the surrounding medium are 

numerically analyzed in detail. The observed dependence of the separation of optically bound particles 

on the incidence of HOBB is in agreement with earlier theoretical prediction. Accurate investigation of 

BF induced by HOBB could provide an effective test for further research on BF between more complex 

particles, which plays an important role in using optical manipulation on particle self-assembly. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Optical binding denotes a significant phenomenon of light- 

matter interaction which can lead to the self-arrangement of par- 

ticles into optically conjunct states [1–3] . This intriguing self- 

arrangement is based upon the delicate equilibrium between the 

optical forces resulting both from the incident beam and from 

the light re-scattered by the other objects. Accurate prediction 

of the optical binding force (BF) enables better understanding of 

the physical mechanism of self-organization, and may offer im- 

portant applications towards contact-free storage of biological cells 

[4,5] and ion traps for quantum computing [6] . 

The research on BF was first demonstrated experimentally in 

early 1989s, Burns et al [7–9] found a series of bound states for 

two polystyrene particles and produced a stream of remarkable 

work that laid the foundations for the field. After that, differ- 

ent approaches have been developed for the theoretical predic- 

tion of BF exerted on bi-sphere system. Geometrical optics (GO) 

[10,11] can be employed to the prediction of BF in the ray optics 

regime, which requires the particles be much larger than the inci- 
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dent wavelength i.e. d � 10 λ with d the diameter of particles and 

λ the wavelength. Conversely, the Rayleigh dipole approximation 

(RDA) [12,13] can be employed to the prediction of BF exerted on 

particles which are much smaller than the wavelength, i.e. d � λ. 

For particles whose sizes are of incident wavelength order, both GO 

and RDA are inapplicable, because diffraction phenomenon cannot 

be neglected in this case. In order to cover the whole d / λ range, 

some researchers have been devoted to the rigorous prediction 

of BF stemming from the solution of Maxwell’s equations which 

is suitable for modeling arbitrary number of particles of arbitrary 

sizes without additional approximation. For example, based on the 

Lorenz Mie theory [14] and the Maxwell Stress Tensor approach, 

Jack investigated BF between bi-sphere cluster of arbitrary size un- 

der the illumination of a plane wave [15,16] . Xu introduced the ad- 

ditional theorem to explore the interaction of collective homoge- 

neous spheres [17,18] . Besides, the GMM equation between an in- 

cident beam with arbitrary profile and an assembly of spheres had 

already been given by Gouesbet et al. [19,20] , with taking advan- 

tage of many ingredients developed for the spherical GLMT [21–

23] . Following this work, Xu and Kall [24,25] put forward the ex- 

tended Mie theory to calculate BF between closely spaced silver 

nanoparticle aggregates. Chvatal et al. presented the binding self- 

arrangement of a pair of Au particles in a wide Gaussian standing 
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wave [26] . Despite the great wealth of knowledge obtained from 

these works, the investigations on BF in the previous studies are 

mainly focused on plane wave or Gaussian beam incidence. 

Recently, due to the special characteristics of non-diffraction 

and self-reconstruction, Bessel beams have attracted growing at- 

tention since its naissance by Durnin [27] and have been widely 

applied in various fields, including optical entrapment and ma- 

nipulation, optical acceleration, particle sizing and nonlinear op- 

tics [28–31] . Motivated by the features and applications of such a 

beam, analytical and numerical analysis are undertaken to inves- 

tigate the beam expansion, field description, scattering and radi- 

ation in acoustic, optics, and microwave. Accurate description of 

a Bessel beam can be obtained by the beam shape coefficients 

as a double quadrature over spherical coordinates [32] , which is 

the original method used in the GLMTs [33,34] . In order to over- 

come the time-consuming and complexity in the numerical cal- 

culation [35–37] , many researchers have devoted to the analytical 

description of BSCs. Lock [38] analyzed the BSCs of general zero- 

order Bessel beams based on the angular spectrum representation 

(ASR). The similar procedure was also extended by Ma et al. [39] to 

investigate the scattering of un-polarized HOBB by spheres. Be- 

sides, Gouesbet and Lock [40,41] established the dark theorem in 

terms of BSCs and predicted the existence of high-order non-vortex 

Bessel beams. Wang derived the general description of circularly 

symmetric Bessel beams of arbitrary order [42,43] . Based on these 

representations, the scattering problem of Bessel beams by a di- 

electric sphere [44,45] , a uniaxial anisotropic sphere [46] as well as 

a concentric sphere [47] has been investigated extensively by using 

the analytical approach. In addition, some studies have also been 

carried out on the trapping force induced by Bessel beams using 

the Rayleigh model [48] , the geometrical optics [49,50] or the rig- 

orous electromagnetic theory [51–53] . Nevertheless, the published 

work to which we have referred mainly focused on cases of sin- 

gle spherical particle. Manipulation of multiple particles simulta- 

neously is both very different and much less mastered than that of 

singular sphere. Accurate prediction of BF induced by HOBB with 

arbitrary polarization angle is of great help for the efficient genera- 

tion of optical manipulation system operating with non-diffracting 

beam. 

In this paper, we will rely on the general description of HOBB 

derived by Wang et al. [54] , who succeeds in dealing analyti- 

cally with BSCs by using quadrature expressions in the classical 

framework of GLMT [21,55] , with using GMM equations and EM 

theories to analyze lateral BF exerted on bi-sphere induced by 

HOBB in detail. The remainder of this paper is organized as fol- 

lows. In Section 2 , two kinds of descriptions on the profile of a 

HOBB are given. Moreover, the expansion expression and coeffi- 

cients of the arbitrary polarized incident field in terms of SVWFs 

are given within the framework of GLMTs. Based on the GMM 

equation, Section 3 derives the analytical solutions to the scatter- 

ing problem of a HOBB by two homogeneous spherical particles. 

Section 4 investigates the theoretical expressions of lateral BF be- 

tween two homogeneous spheres induced by a HOBB using the EM 

theory. Section 5 establishes the discussions for numerical effects 

of various parameters and comparisons of our numerical results 

with earlier theoretical prediction. Finally, a conclusion is shown 

in Section 6 . 

2. Theoretical analysis 

A Cartesian coordinate system Oxyz is built with a fixed global 

coordinate system to indicate the randomness of the polarized di- 

rection of incident Bessel beam and the configuration of the bi- 

sphere system [ Fig. 1 (a)]. Considering two homogeneous spheres 

with radius a j ( j = 1, 2) and refractive index n j ( j = 1, 2) embedded 

in the dielectric medium with refractive index n m 

. The particle co- 

Fig. 1. Configuration of bi-sphere induced by a HOBB. d : Inter-particle distance. θ : 

Angle between the polarization direction and bi-sphere orientation. The set display- 

ing is the intensity of a first-order x -polarized Bessel beam. 

ordinate system O j x j y j z j is established parallel to the primary sys- 

tem Oxyz , and the center of the j th sphere O j is located at ( x j , y j , 

z j ). Without loss of generality, the bi-sphere central line is along x 

axis and the inter-particle distance is denoted by d . The particles 

are vertically illuminated by a polarized HOBB that propagates in 

the z ′ -direction in the Cartesian coordinate system O 

′ x ′ y ′ z ′ , which 

is known as the beam coordinate system. The coordinates of beam 

center O 

′ in Oxyz are ( x ′ , y ′ , z ′ ), and the angle between the polar- 

ization direction of HOBB and the bi-sphere central line is repre- 

sented by β . This pseudo-polarization angle can then determine 

the polarization mode of the wave and may be regarded as a real 

polarization angle. For the vertical incidence, the beam is in trans- 

verse magnetic mode (TM) when β = 0 0 , which corresponds to the 

case in which the electric vector vibrates in the incident plane (i.e. 

the x ′ O 

′ z ′ -plane). Then, the beam is in the transverse electric mode 

(TE) when β = 90 0 , which corresponds to the case where the mag- 

netic vector vibrates in the incident plane (i.e. the y ′ O 

′ z ′ -plane). 

When β presents other values, it represents another polarization 

mode. 

The Bessel beam is assumed to propagate in an isotropic homo- 

geneous medium and is scattered by a bi-sphere system. Electro- 

magnetic fields outside and inside the particles must satisfy these 

vector wave equations (or Helmholtz equations): 

∇ 

2 �
 E + k 2 � E = 0 , ∇ 

2 �
 H + k 2 � H = 0 (1) 

where k is the wavenumber. The solutions can be derived by in- 

troducing the SVWFs, whose expressions used here are the same 

as those used in Ref. [56] Eqs. (1) and ( (2) there). 
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where z (l) 
n ( kr ) represents an appropriate kind of spherical Bessel 

functions: the first kind j n , the second kind y n , or the third kind 

h (1) 
n and h (2) 

n , denoted by l = 1, 2, 3 or 4 respectively. P m 

n ( cos θ ) is 

the associated Legendre Function of the first kind. Then the inci- 

dent, scattered, and internal fields can be expressed as an infinite 
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