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a b s t r a c t 

A new scheme based on the standard perturbation method is proposed to solve the problem of infrared 

radiative transfer (applicable to 4–10 0 0 μm) in a scattering medium, in which the inherent optical prop- 

erties are vertically inhomogeneous. In this scheme, we use the exponential formulas to fit the vertical 

variation of the optical properties first, and then use the perturbation method to resolve the nonlinear 

equations. In the perturbation method, the standard two-stream approximation is used as the zeroth- 

order solution and multiple scattering effect of the continuous changing optical properties is included in 

the first-order solution. By applying the new solution to an idealized medium, the new solution is found 

well suited for solving the infrared radiative transfer in the vertically inhomogeneous medium. The errors 

of the standard two-stream solution can be up to 6% for upward emissivity and 3% for downward emis- 

sivity, while the errors of the new solution is limited to 2% and 0.4%, respectively. Under the different 

circumstances of incident radiation from the bottom, the relative errors of downward emissivity for the 

new solution are also generally smaller than those for the standard two-stream solution. We also apply 

the new solution to two cases of water cloud in an infrared band (5–8 μm) of a radiative model and at 

a wavelength (11 μm) of atmospheric window. The spectrums are quite suitable for studying the optical 

properties of clouds. In the band of 5–8 μm, the maximum relative errors of downward emissivity can 

reach −11% for the standard two-stream solution and is only −2% for the new solution. At the wave- 

length of 11 μm, the results of upward and downward emissivity for the solution are also much more 

accurate than those for the standard two-stream solution. The code, coupled with the inhomogeneous 

infrared radiative transfer solution’s code, is available from the authors upon request. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Finding the solution of radiative transfer equation (RTE) is a key 

issue in a radiation scheme for climate modeling and remote sens- 

ing. In most current radiation schemes, the atmosphere is vertically 

divided into multiple sub-layers. For each sub-layer, the inherent 

optical properties (IOPs) are fixed, assuming that each sub-layer is 

internally homogeneous. Based on this assumption of internal ho- 

mogeneity, various approximation techniques have been proposed 

to solve the RTE (e.g., [6,13,16,18,19,21,28,29,34,37] ). 
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However, observations have verified that the liquid water con- 

tent (LWC), the cloud droplet size distribution, and the IOPs of 

cloud droplets vary with altitude [1,2,24,31,33] . Li et al. [17] de- 

veloped a Monte Carlo radiative transfer model that considers the 

inhomogeneity of IOPs. The results showed that the differences in 

reflectance between the vertically inhomogeneous clouds and their 

homogeneous counterparts can reach 10% for large solar zenith an- 

gles. Because of its time-consuming processes, the Monte Carlo 

method is neither suitable for climate simulation nor for remote 

sensing [20] . Zhang et al. [36] developed a new RTE solution which 

is based on the standard perturbation method and provided an ef- 

ficient way to deal with the shortwave radiative transfer in a ver- 

tically inhomogeneous medium. 
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Since the scattering effect is much weaker for infrared radia- 

tion than for solar radiation, the absorption approximation (AA) is 

widely used in current climate models to solve the infrared radia- 

tive transfer (IRT) [27] . In AA, scattering is neglected in all but the 

forward direction, yielding large errors in cloudy sky cases [22,23] . 

Furthermore, previous studies have shown that AA can produce er- 

rors of > 4 W m 

−2 at the top of atmosphere for outgoing infrared 

radiation in climate simulations [6,14,30] . 

Conversely, when the scattering effect is considered, IRT can be 

solved by using approximation techniques that are originally used 

for solving the transfer of solar radiation. The simplest and the 

most widely used technique for radiative transfer in climate mod- 

els is the two-stream approximation [6,25] , of which the accuracy 

have been investigated by King and Harshvardhan [11] . Similar to 

solar radiation, the two-stream approximation for IRT is based on 

the assumption of internal homogeneity, in which the variations of 

IOPs inside each layer are virtually ignored. Zhang et al. [35] in- 

troduced the adding method based on invariance principle to solve 

the layer connections in IRT for an inhomogeneous atmosphere. 

In principle, IRT in a vertically inhomogeneous scattering 

medium can be solved by increasing the number of sub-layers of 

the atmosphere. However, even the most current climate model 

[12] only includes 30–100 sub-layers, which is not high enough 

to address the internal variation of IOPs. The main purpose of 

this study is to develop a new inhomogeneous IRT solution that 

can handle vertical inhomogeneity of IOPs with a limited num- 

ber of sub-layers in climate model. This solution follows the stan- 

dard perturbation method: the two-stream approximation for ho- 

mogeneous layer is used for the zeroth-order solution and inhomo- 

geneous scattering effect is considered in the first-order solution. 

In the following section, the basic theory of the new inhomoge- 

neous IRT is introduced along with the derivation of its solution. 

In Section 3 , the accuracy and practicality of the new inhomoge- 

neous solution are investigated by applying the solution to an ide- 

alized medium and two cases of water cloud. A brief discussion is 

summarized in Section 4 . 

2. IRT solution of a inhomogeneous medium 

In climate modeling, we are concerned about radiative flux cal- 

culations. So we begin with the azimuthally averaged infrared ra- 

diative transfer equation for intensity I ( τ , μ) in plane-parallel at- 

mospheres: 

μ
dI(τ, μ) 

dτ
= I(τ, μ) − ω(τ ) 

2 

∫ 1 

−1 

I(τ, μ) P (τ, μ, μ′ ) dμ′ 

−(1 − ω(τ )) B (T ) , (1) 

where μ is the cosine of the zenith angle; P ( τ , μ, μ′ ) is the 

azimuthally-averaged scattering phase function where τ is the 

optical depth [ τ is equal to 0 ( τ 0 ) at the top (bottom) of the 

medium]; ω( τ ) is the single scattering albedo; and B ( T ) is the 

Planck function at temperature T , which represents the internal in- 

frared emission of the medium. Since the values of optical proper- 

ties are closely related to spectrum band selection. here we discuss 

the infrared band (4–10 0 0 μm). And the schematic illustration of 

infrared radiative transfer in a layer is shown in Fig. 1 . 

The Planck function is approximated linearly as a function of 

optical depth [30] as 

B [ T (τ )] = B 0 + βτ, (2) 

where β = (B 1 − B 0 ) /τ0 and τ 0 is the total optical depth of the 

medium. The Planck functions B 0 and B 1 are evaluated by using 

the temperature of the top ( τ = 0 ) and the bottom ( τ = τ0 ) of the 

medium. 

According to the two-stream approximation, upward and down- 

ward intensities are I(τ, μ1 ) = I + (τ ) and I(τ, μ−1 ) = I −(τ ) , re- 

Fig. 1. The schematic illustration of infrared radiative transfer in a layer. 

spectively, where μ1 = −μ−1 = 1 / 1 . 66 is a diffuse factor that con- 

verts radiative intensity to flux [4] . 
∫ 1 
−1 I(τ, μ) P (τ, μ, μ′ ) dμ′ can 

be written as ∫ 1 

−1 

I(τ, μ) P (τ, μ, μ′ ) dμ′ = [1 + 3 g(τ ) μμ1 ] I 
+ (τ ) + [1 

+3 g(τ ) μμ−1 ] I 
−(τ ) , (3) 

where g ( τ ) is the asymmetry factor. 

Using Eqs. (1) and (3) , we can obtain 

dI + (τ ) 

dτ
= γ1 (τ ) I + (τ ) − γ2 (τ ) I −(τ ) − γ3 (τ ) B (τ ) , (4a) 

dI −(τ ) 

dτ
= γ2 (τ ) I + (τ ) − γ1 (τ ) I −(τ ) + γ3 (τ ) B (τ ) , (4b) 

where γ1 (τ ) = 

1 −ω(τ )(1+ g(τ )) / 2 
μ1 

, γ2 (τ ) = 

ω(τ )(1 −g(τ )) 
2 μ1 

, and γ3 (τ ) = 

1 −ω(τ ) 
μ1 

. 

In climate models, the single scattering albedo ω( τ ) and asym- 

metry factor g ( τ ) are constant within each sub-layer. Therefore, 

the internal variation of cloud IOPs are virtually ignored and the 

cloud media is taken as internally homogeneous. In the following 

equation, we consider that ω( τ ) and g ( τ ) vary with optical depth. 

The single scattering albedo and the asymmetry factor can be ex- 

pressed as 

ω(τ ) = ˆ ω + ε ω (e −a 1 τ − e −a 1 τ0 / 2 ) , (5a) 

g(τ ) = 

ˆ g + ε g (e −a 2 τ − e −a 2 τ0 / 2 ) , (5b) 

where ˆ ω and ˆ g are the values of single scattering albedo and asym- 

metry factor at τ 0 /2, respectively. The ε ω , ε g , a 1 , and a 2 are fitting 

parameters which can be obtained after fitting the exact values 

of ω( τ ) and g ( τ ). Both ε ω and ε g are small parameters since the 

internal variations of ω( τ ) and g ( τ ) for clouds are much smaller 

than ˆ ω and ˆ g in realistic conditions. By substituting Eqs. (5a) and 

(5b) into γ 1 ( τ ), γ 2 ( τ ), and γ 3 ( τ ) and by ignoring the second order 

of the small parameters of ε 2 ω , ε 
2 
g , and ε ω ε g , we can obtain 

γ1 (τ ) = γ 0 
1 + γ 1 

1 ε ω (e −a 1 τ − e −a 1 τ0 / 2 ) + γ 2 
1 ε g (e −a 2 τ − e −a 2 τ0 / 2 ) , 

(6a) 

γ2 (τ ) = γ 0 
2 + γ 1 

2 ε ω (e −a 1 τ − e −a 1 τ0 / 2 ) + γ 2 
2 ε g (e −a 2 τ − e −a 2 τ0 / 2 ) , 

(6b) 

γ3 (τ ) = γ 0 
3 + γ 1 

3 ε ω (e −a 1 τ − e −a 1 τ0 / 2 ) , (6c) 
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