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a b s t r a c t 

A structural model is developed for the single-scattering properties of snow and graupel particles with a 

strongly heterogeneous morphology and an arbitrary variable mass density. This effort is aimed to pro- 

vide a mechanism to consider particle mass density variation in the microwave scattering coefficients 

implemented in the Community Radiative Transfer Model (CRTM). The stochastic model applies a bicon- 

tinuous random medium algorithm to a simple base shape and uses the Finite-Difference-Time-Domain 

(FDTD) method to compute the single-scattering properties of the resulting complex morphology. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The Community Radiative Transfer Model (CRTM) is a flagship 

radiative transfer model of the U.S. National Oceanic and Atmo- 

spheric Adiministration (NOAA) and has been actively improved 

at the Joint Center for Satellite Data Assimilation (JCSDA). As de- 

scribed in the CRTM user guide by Delst, [15] the CRTM is a fast 

scalar radiative transfer solver, whose primary purpose is its usage 

as a forward operator for satellite observational data assimilation 

in conjunction with the Global assimilation with Gridpoint Statis- 

tical Interpolation (GSI) code by Hu et al., [26] , in order to pro- 

vide initial conditions and drift corrections for numerical weather 

prediction (NWP). Specific procedures for satellite data assimila- 

tion as conducted at the JCSDA are given for instance by Weng 

et al., [58] , while basic introductions to the topic of observational 

data assimilation can be found in Rodgers, [48] and Kalnay, [31] . 

In this context, Rodgers, [48] puts a stronger focus on the remote 

sensing aspect, while Kalnay, [31] approaches the subject from the 

perspective of NWP. A more recent example, specifically including 

solid hydrometeors, has been published by Wood et al., [59] . The 

CRTM itself has been extensively validated in the past, by Chen 
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et al., [12] , Yi et al., [64] or Ding et al., [18] in comparison with 

high accuracy solvers such as DISORT by Stamnes et al., [51] . 

In addition to algorithms to deal with atmospheric absorption, 

the official CRTM release also includes two solvers to handle elec- 

tromagnetic scattering by particles. In particular, these two solvers 

are the so-called “Advanced Doubling-Adding Method” (ADA) by 

Liu et al., (2006) and the Successive-Order-of-Interaction Radiative 

Transfer Model by Heidinger et al., [24] , with the ADA being the 

default solver. As detailed in the CRTM user guide by Delst, [15] , 

scattering particles are broadly categorized into aerosol and cloud 

particles, with optical property data sets for each category stored 

in a separate unformatted binary file. This study focuses on the 

cloud scattering properties retained as Look-Up tables (LUTs) in 

the CRTM CloudCoeff binary file. Due to its application for satellite 

data assimilation, the description of cloud particles in the CRTM 

aligns itself with cloud microphysical parameterizations used in 

NWP models, as described for instance by McCumber et al., [39] . 

The CRTM does not include a continuous, so-called spectral ice 

scheme, but uses a four-class, type 1 classification of cloud ice in 

the terminology of McCumber et al., [39] instead. Aside from liq- 

uid water droplets, the CRTM distinguishes solid hydrometeors into 

cloud ice, and precipitating ice in the form of either snow, graupel, 

or hail. The distinguishing feature of the solid hydrometeor cate- 

gories is their associated mass density, which is given in Table 1 . 

The original computations of the default single-scattering prop- 

erties of the hydrometeors listed in Table 1 include certain incon- 
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Table 1 

Solid hydrometeor categories and asso- 

ciated densities in the CRTM Release 

2.1.3. 

Category Density (g/cm 

3 ) 

Cloud ice 0.900 

Graupel and hail 0.400 

Snow 0.100 

sistencies, which are discussed in further detail in Section 3.1 and 

Section 4 . A recent update of the CRTM ice optical properties has 

been provided by Yi et al., [64] , where the default ice optical prop- 

erties are replaced by the so-called MODIS Collection 6 ice cloud 

optical properties (Platnick et al., [46] ) in the infrared and mi- 

crowave regime and on the basis of the temperature dependent 

ice refractive index tabulated by Iwabuchi and Yang, [28] . 

Consequently, this manuscript will focus on providing density- 

variable scattering properties for the remaining solid hydrome- 

teor optical properties in the microwave regime, namely snow and 

graupel. The second section of this manuscript discusses the model 

proposed for the morphology of the graupel and snow scatter- 

ing particles. Its third section describes the computation of the 

particle single-scattering properties and the fourth section deals 

with the corresponding bulk scattering properties and their adap- 

tion to the CRTM format. The fifth section investigates the changes 

brought about in the radiative transfer calculations involving scat- 

tering cloud layers, and the sixth section comprises the conclusion 

of the manuscript. 

2. Particle morphology model 

2.1. Bicontinuous random medium (BRM) theory 

As shown in Table 1 , the crucial aspect distinguishing cloud 

ice, snow and graupel in the CRTM is the assumed bulk mass 

density. Consequently, the first and primary requirement for the 

morphological model is its ability to create a scattering particle 

that can cover the entire range of bulk mass density as given 

in Table 1 . Moreover, observations of snow, graupel, and espe- 

cially rimed snow documented in e.g. Pruppacher and Klett, [47] or 

Kikuchi et al., [32] show that these particles may often display a 

highly irregular, random structure that is often covered in rime for 

precipitating ice, which the model also needs to be able to repro- 

duce. A natural response is to first look for a deterministic model 

that is able to reproduce the natural diffusive growth process of 

ice crystals in the atmosphere, such as the cellular automata of 

Gravner and Griffeath, [23] or the subsequent parametric interface 

FEM model by Barrett et al., [1] . However, reproducing the full 

spectrum of possible solid precipitation shown by Kikuchi et al., 

[32] using these methods is computationally not feasible in the 

scope of this project. Furthermore, random physical processes such 

as mesoscale surface roughness, riming, and turbulent convection 

cannot be considered using these methods alone. The importance 

of taking these processes into account in order to match the optical 

properties of real ice crystals has been demonstrated for instance 

for the case of surface roughness by Stegmann et al., [52] . In these 

cases, the chosen deterministic ice growth model would have to 

be supplemented by the approach of Zhang et al., [67] for surface 

roughness, Criscione et al., [14] for riming, and Wang, [54] for tur- 

bulent convection, further increasing the computational complexity 

and strain of this method. Instead, a much simpler solution is the 

application of a bicontinuous random spatial partitioning scheme 

known from the theory of heterogeneous materials (see Sahimi, 

[49] for an overview). The term bicontinuous in this context means 

that the two separated phases, which are ice and air for the case 

of snow and graupel, may display connected structures extend- 

ing over the entire domain upon which the Bicontinuous Random 

Medium (BRM) algorithm is applied. This scheme had first been 

developed and applied to scalar scattering by a bulk medium by 

Berk, [4] and Berk, [5] as the so-called leveled-wave model. Later, 

the model has been applied to scattering of electromagnetic waves 

by particles by Ding et al., [17] and Tang et al., [53] . Subsequently, 

the model has also been utilized by Xiong and Shi, [60] in the con- 

text of polarized radiative transfer through layers of settled ground 

snow. 

The basis of the BRM model as originally defined by Berk, [4] , 

is a finite superposition of stochastic standing cosine waves S( � r ) . 

Its mathematical definition is given in Eq. (1) , while an illustration 

can be found on the left hand side of Fig. 1 . 

S ( � r ) = 

1 √ 

N 

N ∑ 

n =1 

cos 
(
�
 k n · � r + φn 

)
(1) 

Using differential geometric terminology, S( � r ) in Eq. (1) is a 

level set over a Euclidean manifold with coordinates � r , and as such 

it is a simplified stochastic special case of more general methods 

to track the dynamic evolution of interfaces as developed by Os- 

her and Sethian, [43] . In Eq. (1) , the integer N is the total number 

of superimposed cosine waves. The scalar φn ∈ [0, 2 π ) is the ran- 

dom phase shift associated with the n th cosine wave S n ( � r ) and fol- 

lows a uniform distribution. In the current study, an xorshift 1024 ∗

pseudo-random number generator (PRNG) from the Xorshift class 

of PRNGs by Marsaglia, [37] is used to obtain uniformly distributed 

random numbers. The 3D vector � k n = k n · ˆ k n is the wave vector of 

S n ( � r ) . Its direction 

ˆ k n is uniformly distributed on the unit sphere 

and its scaling wavenumber k n determines the geometric proper- 

ties and structural length scales of the BRM. Its selection is a priori 

arbitrary and as this work is primarily dealing with solid hydrom- 

eteors consisting of ice crystals, the gamma distribution suggested 

by Chen and Chang, [11] is selected. It should be noted that this 

choice is strongly dependent on the material under scrutiny. Berk, 

[5] for instance used a shifted delta distribution to study water–

oil microemulsions, i.e. only one specific wavenumber. In a notable 

analogy to the present study, the resulting morphologies obtained 

via the delta distribution bear a remarkable similarity to the struc- 

tures computed by solving the deterministic Cahn-Hilliard PDE by 

Cahn and Hilliard, [10] , albeit at a fraction of the computational 

cost. As a consequence, the wavenumber may randomly take on 

any value in the interval [0, ∞ ), under the sole condition that the 

frequency of occurrence of wavenumbers follows a gamma proba- 

bility distribution function p ( k ) as defined in Eq. (2) . 

p(k ) = 

1 

�(b + 1) 

( b + 1 ) 
b+1 

〈 k 〉 
(

k 

〈 k 〉 
)b 

exp 

(
−(b + 1) 

k 

〈 k 〉 
)

(2) 

In Eq. (2) , �( •) is the Gamma function, 〈 k 〉 is the mean 

wavenumber, and b is a shape parameter related to the standard 

deviation of p ( k ). 

An algorithm for drawing pseudo-random numbers from a 

gamma probability distribution can be found for instance in 

Marsaglia and Tsang, [36] . After a realization of the random level 

set S( � r ) has been drawn, the interface separating the two phases 

ice and air needs to be defined by choosing one specific level. This 

can be achieved by introducing a threshold level θ given by Eq. (3) . 

θ = er f −1 ( 1 − 2 f V ) (3) 

Eq. (3) relates the threshold θ of S( � r ) to the volume fraction f V 
of ice in the total volume on which the BRM model is applied via 

the inverse of the error function erf − 1 ( •). The introduction of the 

threshold on a 2D example wave field is illustrated in Fig. 1 , with 

the resulting ice structure shown on the right side. The original 

field S( � r ) is mapped to a new field 

˜ S ( � r ) , which is defined by Eq. (4) . 
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