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a b s t r a c t 

The multiangle dynamic light scattering (MDLS) technique can better estimate particle size distributions 

(PSDs) than single-angle dynamic light scattering. However, determining the inversion range, angular 

weighting coefficients, and scattering angle combination is difficult but fundamental to the reconstruction 

for both unimodal and multimodal distributions. In this paper, we propose a self-adapting regularization 

method called the wavelet iterative recursion nonnegative Tikhonov–Phillips–Twomey (WIRNNT-PT) al- 

gorithm. This algorithm combines a wavelet multiscale strategy with an appropriate inversion method 

and could self-adaptively optimize several noteworthy issues containing the choices of the weighting co- 

efficients, the inversion range and the optimal inversion method from two regularization algorithms for 

estimating the PSD from MDLS measurements. In addition, the angular dependence of the MDLS for es- 

timating the PSDs of polymeric latexes is thoroughly analyzed. The dependence of the results on the 

number and range of measurement angles was analyzed in depth to identify the optimal scattering angle 

combination. Numerical simulations and experimental results for unimodal and multimodal distributions 

are presented to demonstrate both the validity of the WIRNNT-PT algorithm and the angular dependence 

of MDLS and show that the proposed algorithm with a six-angle analysis in the 30–130 ° range can be 

satisfactorily applied to retrieve PSDs from MDLS measurements. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Many novel and useful techniques have emerged as powerful 

tools to measure particle size distribution (PSD) such as the light 

scattering technology, the scanning electron microscopy (SEM), 

atomic force microscopy (AFM), Fourier transform infrared spec- 

troscopy (FT-IR) and so on. Light scattering is a versatile and non- 

invasive set of technique for measuring in situ on PSD. With the 

development of multiangle light scattering (MALS) measuring sys- 

tems [1–3] , multiangle dynamic light scattering (MDLS) and mul- 

tiangle static light scattering (MSLS) [4–6] are widely applied to 

measure PSD of a variety of systems like emulsions, polymers, vesi- 

cles. For the determination of nano- or submicron particle size, 

MDLS should provide a better estimate of PSD than MSLS, which 

focuses on the determination of PSD in the larger size range from 

roughly 0.1 to a few micrometers. MDLS, which consists of acquir- 

ing the autocorrelation functions (ACFs) of light intensity at sev- 
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eral different angles and processing the whole set of collected in- 

formation, has become a promising technique to assess the PSD 

of a sample dispersed in a dilute suspension, particularly for poly- 

disperse or multimodal samples. As the properties of nano- and 

submicron particles are influenced by their size, many fields of 

research require estimating the PSD with good resolution, rang- 

ing from the study of the process control of nanoparticle growth 

[7–9] and protein aggregation [10,11] to the monitoring of atmo- 

spheric aerosols [12–15] and the combustion processes of soot and 

fuels [16–18] . 

Retrieving the PSD from MDLS measurements, i.e., acquiring the 

exact solution of a Fredholm integral equation of the first kind, 

is a well-known ill-posed problem that is considered highly com- 

plex since the solution lacks uniqueness and existence; in other 

words, the presence of a small amount of noise in the measured 

angular light-scattering data can give rise to large spurious os- 

cillations in the solution. Numerous inverse techniques, such as 

the Bayesian method [19] , the CONTIN method [20,21] , the reg- 

ularization method [22,23] and the neural network method [24] , 

have been developed to retrieve the PSD from MDLS data. The 

main drawback of these methods is the poor capacity to discrimi- 

nate the peaks of multimodal PSDs. Moreover, these methods have 
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unsatisfactory stability in the presence of random noise and are 

time consuming. Other noteworthy issues with the data inversion 

for MDLS lie in the determination of the inversion range, the an- 

gular weighting coefficients and the scattering angle combination, 

which greatly affect the estimation of PSDs. For all the above in- 

version methods, if a good inversion range cannot be provided, the 

parameter optimization process often becomes trapped into local 

minima, which leads to large errors. Wavelet multiscale analysis 

is a newly developed inversion strategy to accelerate convergence, 

avoid disturbance of the local minimum and enhance the stabil- 

ity and reliability of inversion. Its effectiveness has been demon- 

strated for many inverse problems involving the nonlinear geo- 

physics equation [25] , the two-dimensional acoustic wave equation 

[26] and ill-posed equations [27] such as that in the main problem 

to be resolved in this paper. For the second issue, the weighting 

coefficients may be directly obtained from (i) the average scatter- 

ing light intensities at different angles or (ii) the autocorrelation 

baselines. However, the propagation of errors associated with such 

experimental methods, which inevitably induce noise, may intol- 

erably corrupt the PSD estimate. To obtain more precise weight- 

ing coefficients, Vega et al. [28,29] proposed a recursive method 

based on a least-squares calculation, and we further improved this 

method by introducing nonnegative Tikhonov [23] (NNT) and non- 

negative Phillips-Twomey [22] (NNPT) regularization methods in 

each recursion step in our previous study [30] ; the resulting al- 

gorithm was called the recursion nonnegative Tikhonov-Phillips- 

Twomey (RNNT-PT) algorithm and was validated with simulated 

MDLS data for unimodal and multimodal PSDs. Regarding the third 

issue, despite the clear importance of choosing measurement an- 

gles in MDLS, they are rarely studied and analyzed in simulations 

or experiments, nor are referable angle numbers and ranges pro- 

vided. 

In the present work, we propose a self-adapting regulariza- 

tion method called the wavelet iterative recursion nonnegative 

Tikhonov–Phillips–Twomey (WIRNNT-PT) algorithm and provide a 

recommended angle combination—a six-angle analysis in the 30–

130 ° range—to improve estimates of the weighting coefficients 

and the PSDs. The whole inversion process is conducted using a 

wavelet multiscale strategy, and the inversions are carried out at 

different scales by an appropriate reconstruction method. In this 

method, an iterative step is developed from our previous recursion 

method [30] , and the optimal inversion method is automatically 

chosen from NNT or NNPT regularization in each iterative recur- 

sion step on the basis of research on the inversion peculiarities of 

the two regularization methods for different distributions. 

The basic theoretical principles of MDLS and the proposed 

WIRNNT-PT algorithm are presented in Sections 2 and 3 , re- 

spectively. Section 4 provides insights into the results obtained 

when the proposed method is applied to simulated and experi- 

mental data, as well as comparisons with the RNNT-PT methods. 

Section 5 presents a thorough analysis of the angular dependence 

of the MDLS for estimating PSDs. 

2. Theory of MDLS 

In DLS, a devoted digital correlator enables measuring the 

second-order autocorrelation function of the light scattered at a 

given θ r , G 

(2) 
θr 

( τ j ) , and for different values of the time delay, τ j . In 

MDLS [31] , several measurements are taken at different θ r (r = 1, 2, 

..., R ) . These measurements are related to the (first-order and nor- 

malized) autocorrelation function of the electric field, g (1) 
θr 

( τ j ) . 

G 

(2) 
θr 

( τ j ) = G 

(2) 
∞ , θr 

(1 + β
∣∣g (1) 

θr 
( τ j ) 

∣∣2 
) , 

(r = 1 , 2 , ..., R and j = 1 , 2 , ..., M r ) (1) 

where G 

(2) 
∞ , θr 

is the measured baseline, β ( < 1) is an instrumental 

parameter, R is the total number of scattering angles, and M r is the 

total number of points of the autocorrelation functions (limited by 

the number of available correlator channels). For a given angle, the 

autocorrelation function of the electric field, g (1) 
θr 

( τ j ) , is determined 

by the PSD f ( D i ) as follows: 

g (1) 
θr 

( τ j ) = k θr 

N ∑ 

i =1 

exp (−�0 τ j / D i ) C I, θr 
( D i ) f ( D i ) , (2) 

with 

�0 = 

16 πn 

2 K B T 

3 ηλ2 
sin 

2 

(
θr 

2 

)
, (3) 

k θr 
= 

1 ∑ N 
i =1 C I, θr 

( D i ) f ( D i ) 

(r = 1 , 2 , ..., R ) 

(4) 

where k θr 
are (a priori unknown) the weighting coefficients at each 

given scattering angle, θ r , and the denominator of Eq. (4) is pro- 

portional (but not equal) to the light intensity scattered at θ r , thus 

the k θr 
are proportional to both 〈 I θr 

〉 −1 and ( 

√ 

G 

(2) 
∞ , θr 

) −1 ; C I, θr 
( D i ) 

represents the fraction of scattering light intensity by a particle 

of diameter D i at θ r , which can be calculated through Mie scat- 

tering theory [32] ; f ( D i )( i = 1, 2, ..., N ) is the discrete PSD, and 

N is the number of PSD points, which are evenly spaced in the 

range [ D min , D max ]; λ(nm) is the in vacuo wavelength of the inci- 

dent laser light; n is the real refractive index of the nonabsorbent 

medium; K B ( = 1.38 × 10 − 23 J/K) is the Boltzmann constant; T (K) is 

the absolute temperature, and η(g/nms) is the medium viscosity at 

T. 

Then, for the most general case, Eq. (2) gives rise to a matrix 

equation of the form 

g 

(1) 
r = k θ1 

G r f , (5) 

where the augmented vector g (1) 
r = (g (1) 

θ1 
, g (1) 

θ2 
, ..., g (1) 

θr 
) T with di- 

mensions [( M 1 + … + M r ) × 1], and the elements of g (1) 
θr 

( M r × 1) 

are g (1) 
θr 

( τ j ) , where τ j is the delay time at channel j ( j = 1, 

2, ..., M r ); k θ1 
is the weighting coefficient at the reference 

angle θ1 ; f ( N × 1) is the unknown vector that contains the 

fraction of particles in each size interval, f ( D i ); and the aug- 

mented matrix G r = (k ∗
θ1 

F θ1 
, k ∗

θ2 
F θ2 

, ..., k ∗
θr 

F θr 
) T with dimensions 

[( M 1 + … + M r ) × N ], where F θr 
is a an M r × N matrix that contains 

elements e −�0 ( θr ) τ j / D i · C I, θr 
( D i ) , which can be calculated according 

to Mie theory. Recovering f from Eq. (5) requires accurately deriv- 

ing the dimensionless weighting coefficient ratio k ∗
θr 

relative to the 

fixed reference angle θ1 as 

k ∗θr 
= 

k θr 

k θ1 

= 

(
N p, θr 

N p, θ1 

)[ 

G 

(2) 
∞ , θ1 

G 

(2) 
∞ , θr 

] 1 / 2 

= 

(
N p, θr 

N p, θ1 

)〈
I θ1 

〉〈
I θr 

〉 . (6) 

Here, 〈 I θr 
〉 is the mean intensity scattered at angle θ r and is re- 

lated to G 

(2) 
∞ , θr 

through 〈 I θr 
〉 = 

√ 

G 

(2) 
∞ , θr 

. N p, θr 
/ N p, θ1 

is the ratio be- 

tween the particle number concentration at θ r and the particle 

number concentration at θ1 . For most cases, the sample concen- 

tration remains unaltered along the measurement angles, and thus, 

N p, θr 
/ N p, θ1 

= 1 . The autocorrelation baselines, G 

(2) 
∞ , θr 

, or the average 

scattering light intensity at different angles, 〈 I θr 
〉 , might be consid- 

ered very powerful for obtaining the weighting coefficient ratio k ∗
θr 

, 

according to Eq. (6) and then finding f by the inversion of Eq. (5) . 

This, however, is not the case. The baseline is difficult to achieve 

by the above method because recovery of the PSD from MDLS is 

an inherently ill-posed problem, where small noises present in the 
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