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a b s t r a c t 

A theoretical framework is presented that permits investigations of the relation between inelastic 

backscattering from microparticles and bulk samples of Raman-active materials. It is based on the Lorentz 

reciprocity theorem and no fundamental restrictions concerning the microparticle shape apply. The ap- 

proach provides a simple and intuitive explanation for the enhancement of the differential backscattering 

cross-section in particles in comparison to bulk. The enhancement factor for scattering of water droplets 

in the diameter range from 0 to 60 μm (vitally important for the a priori measurement of liquid water 

content of warm clouds with spectroscopic Raman lidars) is about a factor of 1.2–1.6 larger (depending 

on the size of the sphere) than an earlier study has shown. The numerical calculations are extended to 

10 0 0 μm and demonstrate that dispersion of the refractive index of water becomes an important factor 

for spheres larger than 100 μm. The physics of the oscillatory phenomena predicted by the simulations 

is explained. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The water content of clouds, be it in liquid or frozen form, is 

one of the key parameters that govern the energy budget of the 

atmosphere, and thus the weather and by extension the climate 

of the Earth [1,2] . For this reason accurate measurements of cloud 

water content are of high importance so that microphysical pro- 

cesses in clouds can be studied and eventually understood better, 

and numerical weather prediction and climate models may be val- 

idated. Over the years, remote sensing has become an integral part 

of such endeavors for the spatial and temporal coverage it pro- 

vides. Today, both active and passive instruments are monitoring 

clouds from space and from the ground continuously, and cloud 

microphysical products are generated routinely from these obser- 

vations. However, one should take notice of the fact that these 

products are often the results of retrieval algorithms based on 

proxy variables and modeling rather than stemming from direct 

measurements of the parameter itself, which adds another layer 

of uncertainty. For instance, in the case of ice water content (IWC), 

common retrieval techniques employ empirical relations between 

radar reflectivity (e.g., [3,4] ), or lidar extinction coefficient (e.g., 

[5,6] ), and IWC derived from ice particles sampled in situ during 
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field campaigns. So, ideally, direct measurement methods should 

be devised to verify the retrieval techniques. Our objective is to de- 

termine liquid water content (LWC) and IWC from lidar measure- 

ments a priori by utilizing the Raman effect. 

The water molecule is Raman-active in all three phases of mat- 

ter, and Raman scattering by water vapor has been exploited suc- 

cessfully for lidar measurements of atmospheric humidity for a 

long time (as an early example of an operational water vapor Ra- 

man lidar, see [7] ). For experimental and methodological reasons, 

however, Raman lidar studies of the condensed water phases are 

much more complicated, and despite dedicated efforts over the last 

years (see the reviews given in [8,9] ), a priori LWC and IWC mea- 

surements have been proven elusive. This is about to change with 

the advent of spectroscopic water Raman lidars. These instruments 

allow for the first time direct measurement of the Raman backscat- 

ter coefficients of cloud water and ice [9] . 

Let β be the Raman backscatter coefficient of cloud droplets, 

then 

LWC = 

Kβ

d σs / d�
, (1) 

where K is a known instrument-specific constant. One can directly 

obtain LWC from the measurement of β provided that d σ s /d �, 

the Raman differential backscattering cross-section of a water 

molecule within a water droplet (subscript ‘s’ stands for sphere) 

is known. A similar relation applies to IWC, only the numerical 
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values of K, β , and d σ /d � (being shape dependent) are different. 

Note, however, that d σ s /d � is not the same as the cross-section 

d σ b /d � determined in laboratory experiments using bulk samples 

(subscript ‘b’ for bulk), but differs from it substantially and exhibits 

a size dependence as previous studies have shown [10,11] . 

Let ηs be the ratio of the molecular cross-section in a droplet to 

the one in the bulk water sample, henceforth called the enhance- 

ment factor: 

ηs = 

d σs / d�

d σb / d�
, (2) 

then Eq. (1) can be rewritten as: 

LWC = 

Kβ

ηs d σb / d�
. (3) 

So in order to obtain LWC a priori , we have to determine the Ra- 

man differential backscattering cross-section of a water molecule 

in a macrosample and the magnitude of the size-dependent en- 

hancement factor. In a previous publication, we have obtained 

d σ b /d � with high accuracy [12] , the subject of the present paper 

is the investigation of ηs . Because the situation is even more com- 

plicated for ice due to the enhancement factor being dependent 

on the shape of the ice particle [13,14] , we focus here mostly on 

the liquid phase. The enhancement factor for ice particles will be 

discussed in a follow-up article. 

Incidentally, we point out that a study of the enhancement fac- 

tor of water droplets was published previously [10] which, how- 

ever, was restricted to relatively small size parameters and left 

some questions unaddressed. Thus our motivation has been three- 

fold: (1) Find a simple and intuitive explanation for the enhance- 

ment of the molecular Raman backscattering cross-section in water 

droplets in comparison to bulk samples. (2) Determine the magni- 

tude of ηs . Because any error in ηs directly affects LWC results, this 

knowledge is crucial. (3) Extend the droplet size range to diame- 

ters of drizzle and small rain drops for which a spherical shape 

may still be assumed, and explore the dependence of ηs on size. 

The article is organized as follows. In Section 2 , the theory of 

our model is described in detail. We have followed a new approach 

and have applied the Lorentz reciprocity theorem to the analysis of 

Raman scattering by particles. The numerical results are presented 

and discussed in Section 3 . Conclusions are drawn and an outlook 

is given in Section 4 . 

2. Theory 

The following theory is basic and is not limited to the case of 

spherical liquid droplets. To evaluate the value of η, we use a new 

approach based on Lorentz reciprocity theorem [15] which states 

that for any volume and its enclosing surface S the following rela- 

tion between the volume and surface integrals ∫ 
[ � J 1 � E 2 − �

 J 2 � E 1 ]d V = 

∮ 
S 

[ � E 1 × �
 H 2 − �

 E 2 × �
 H 1 ]d 

�
 S (4) 

holds for two sinusoidal current densities � J 1 and 

�
 J 2 oscillating 

at the same frequency and generating the electromagnetic fields 
�
 E 1 , � H 1 and 

�
 E 2 , � H 2 . For a particular case of � J 1 and 

�
 J 2 being the cur- 

rents of two point dipoles and the volume covering the whole 

space, the surface integral vanishes and the theorem simplifies to 

�
 μ�
 E (d) = 

�
 d � E (μ) (5) 

where � E (d) is the field created by a point dipole � d at the location 

of point dipole � μ and 

�
 E (μ) is the field created by � μ at the location 

of � d . 

Suppose that the point electrical dipole � μ is immersed in a di- 

electric of an arbitrary shape. The dielectric material occupies vol- 

ume V . Both dipoles oscillate at angular frequency ω 

′ . We assume a 

large distance between the two dipoles (much larger than the size 

of V and the wavelength of the wave). Without a loss of generality, 

we can also assume that � d ′ is oriented along x -axis of the coor- 

dinate system and consider a wave radiated by this dipole prop- 

agating in z -direction towards � μ. At a large distance from 

�
 d ′ , the 

electromagnetic wave emitted by � d ′ can be treated as a plane x - 

polarized wave (this wave is considered plane within V ). The elec- 

trical field of this ( pumping ) wave reads E 0 exp (k ′ z − iω 

′ t) , where 

E 0 ∝ d ′ . 
When the pumping wave interacts with the dielectric volume, 

the internal field (inside the volume) can be presented as a vec- 

tor field 

�
 E (x ) 
i 

(x, y, z, ω 

′ ) , where we drop the time-dependent fac- 

tor exp (−iω 

′ t) and the superscript indicates that the internal field 

is calculated for the case of a plain, x -polarized incident wave. 

Suppose that ( x, y, z ) is the location of the dipole � μ which is 

induced by � E (x ) 
i 

. In the simplest case of Raman scattering, � μ = 

α�
 E (x ) 
i 

(x, y, z, ω 

′ ) with α being polarizability but it oscillates with 

angular frequency ω. The field produced by this dipole is the 

scattered wave and can be obtained from Eq. (5) by considering 

an auxiliary dipole � d . Generally, the angular coordinates of this 

dipole can be arbitrary, but here we take a practically important 

case of backscattering when the location of � d coincides with 

�
 d ′ . 

For simplicity it is assumed that | � d | = | � d ′ | . Vector � d can be ei- 

ther parallel or perpendicular to � d ′ . In the case of � d ‖ � d ′ , one gets 

α�
 E (x ) 
i 

(x, y, z, ω) � E (x ) 
i 

(x, y, z, ω 

′ ) = dE 
(μ) 
x . The projection of the scat- 

tered field on y -axis can be obtained by considering � d ⊥ 

�
 d ′ which 

results in α�
 E 
(y ) 
i 

(x, y, z, ω) � E (x ) 
i 

(x, y, z, ω 

′ ) = dE 
(μ) 
y . 

If there are many incoherent induced dipoles homogeneously 

distributed over the entire volume V , then one can get the to- 

tal power radiated by these dipoles in the direction to the dipole 
�
 d by integration. The differential x -polarized backscattering cross- 

section per dipole is the radiant intensity of the scattered wave 

(proportional to | E (μ) 
x | 2 ) divided by the intensity (irradiance) of 

the pumping wave (proportional to | E 0 | 
2 ) and similar for the y - 

polarized scattering. Thus, one gets 

d σ ( x ) 
V 

d�
= 

Y | α| 2 
V | � E 0 | 4 

∫ 
V 

∣∣�
 E ( 

x ) 
i ( x, y, z, ω ) � E ( 

x ) 
i 

(
x, y, z, ω 

′ )∣∣2 
d V (6) 

and 

d σ ( y ) 
V 

d�
= 

Y | α| 2 
V | � E 0 | 4 

∫ 
V 

∣∣�
 E ( 

y ) 
i ( x, y, z, ω ) � E ( 

x ) 
i 

(
x, y, z, ω 

′ )∣∣2 
d V (7) 

where Y absorbs all the constant factors such as speed of light in 

vacuum, concentration of dipoles etc. This constant also includes 

a factor dependent on the units, photon/(s sr) or W/sr used for 

the radiant intensity. The value of the total backscattering cross- 

section (a common case of lidar measurements is integration of 

scattering over both polarizations) can be obtained as a sum of the 

two values: 

d σV 

d�
= 

d σ (x ) 
V 

d�
+ 

d σ (y ) 
V 

d�
. (8) 

2.1. Bulk Raman scattering 

First, we apply Eqs. (6) –(8) to the case of bulk scattering. In 

such a case the dielectric is a large volume (theoretically a half- 

space) and has a plain interface with air but the scattering is col- 

lected from a volume small in comparison to the size of the bulk 

sample (see Fig. 1 ). In practice, this volume is defined by the de- 

tails of the experimental setup. The internal field inside the bulk 

E (x ) 
i 

(x, y, z, ω) is uniform and in accordance with Fresnel’s formula 

reads 

E (x ) 
i 

(x, y, z, ω) = 

2 

n + 1 

E 0 exp (ikz) , (9) 
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