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a b s t r a c t 

In this paper, we evaluated the convergence rate (CPU time) of a new mathematical formulation for 

the numerical solution of the radiative transfer equation (RTE) with several High-Order (HO) and High- 

Resolution (HR) schemes. In computational fluid dynamics, this procedure is known as the Normalized 

Weighting-Factor ( NWF ) method and it is adopted here. The NWF method is used to incorporate the high- 

order resolution schemes in the discretized RTE. The NWF method is compared, in terms of computer 

time needed to obtain a converged solution, with the widely used deferred-correction ( DC ) technique for 

the calculations of a two-dimensional cavity with emitting–absorbing–scattering gray media using the 

discrete ordinates method. Six parameters, viz. the grid size, the order of quadrature, the absorption co- 

efficient, the emissivity of the boundary surface, the under-relaxation factor, and the scattering albedo 

are considered to evaluate ten schemes. The results showed that using the DC method, in general, the 

scheme that had the lowest CPU time is the SOU. In contrast, with the results of the DC procedure the 

CPU time for DIAMOND and QUICK schemes using the NWF method is shown to be, between the 3.8 

and 23.1% faster and 12.6 and 56.1% faster, respectively. However, the other schemes are more time con- 

suming when the NWF is used instead of the DC method. Additionally, a second test case was presented 

and the results showed that depending on the problem under consideration, the NWF procedure may be 

computationally faster or slower that the DC method. As an example, the CPU time for QUICK and SMART 

schemes are 61.8 and 203.7%, respectively, slower when the NWF formulation is used for the second test 

case. Finally, future researches to explore the computational cost of the NWF method in more complex 

problems are required. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

From the 60’s to the present time, the radiation phenomenon in 

participant media has been represented with the radiative transfer 

equation (RTE) [1,2] . Several numerical solution methods have been 

developed for radiative heat transfer problems and today most 

of researchers apparently use one of four methods: (a) the zonal 
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method (ZM), (b) the Spherical Harmonics (P N -Approximations) 

and its variations, (c) the Monte Carlo method (MCM), and (d) the 

discrete ordinates method (DOM) or its more modern form, the fi- 

nite volume method (FVM). Another method is the discrete trans- 

fer method (DTM), which combines features of the DOM, ZM and 

MCM [3] . 

In particular, the DOM has been applied to, and optimized for, 

general radiative heat transfer problems, primarily through the pi- 

oneering works of Fiveland [4–7] and Truelove [8–10] . In the last 

two decades, the DOM, which is used in the present work, and 

the finite volume method have received great attention and have 

emerged as one of the most popular methods, providing a good 
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Nomenclature 

G incident radiation, W m 

−2 

I radiation intensity, W m 

−2 sr −1 

I( 
−→ 

r , �) radiation intensity in the position 

−→ 

r and direction 

�, W m 

−2 sr −1 

I( 
−→ 

r , �′ ) radiation intensity in the position 

−→ 

r and incom- 

ing direction �,́ W m 

−2 sr −1 

I( 
−→ 

r w 

, �) radiation intensity at the wall in the position −→ 

r and direction �, W m 

−2 sr −1 

I b ( 
−→ 

r ) blackbody radiation intensity in the position 

−→ 

r , 

W m 

−2 sr −1 

I w 

radiation intensity at the wall boundary condi- 

tion, W m 

−2 sr −1 

k constant of the NWF (intercept of the linear func- 

tion) 

mm constant of the NWF (slope of the linear function) 

M number of discrete directions 

ˆ n outward unit vector normal −→ 

r position vector 

S source term, W m 

−2 

w quadrature weight 

x, y dimensional coordinates, m 

Greek symbols 

β extinction coefficient, m 

−1 

γ direction cosine 

�x x -control volume thickness, m 

�y y - control-volume thickness, m 

εw 

wall surface emissivity 

κa absorption coefficient, m 

−1 

μ, ξ , η direction cosines in the x-, y-, z- directions 

ρw 

wall surface reflectivity 

σ s scattering coefficient, m 

−1 

φ general dependent variable 

( �, �′ ) scattering-phase function 

� solid angle 

Subscripts 

b Blackbody 

C central node 

D downstream node 

e, w, n, s east, west, north and south control volume faces 

E, W, N, S nodes neighbors of the node P 

f control volume face 

N north node 

P node of reference 

S south node 

U upstream node 

W west node 

Superscripts 
/ incident direction 

_ _ indicate a normalized variable 

m discrete direction 

n current iteration 

n − 1 previous iteration 

compromise between accuracy and computational economy. Today, 

they are probably the most popular RTE solvers [3] . 

The DOM is based on the numerical solution of the RTE for a 

set of discrete directions spanning the total solid angle range of 

4 π , replacing the integrals over direction (solid angle) by numeri- 

cal quadratures. 

Two major shortcomings of this method (DOM) that may 

strongly affect the solution accuracy are the ray effect and numer- 

ical scattering (false scattering), which were discussed in Refs. [11–

13] . 

The ray effect is a consequence of angular discretization. It 

arises from the approximation of the continuous angular variation 

of the radiation intensity field by a discrete set of radiation intensi- 

ties in specified ordinate directions. It is independent of the spatial 

discretization. Ray effects may be mitigated by refining the angular 

discretization or by using the modified discrete ordinates method 

[14] . 

The numerical scattering is associated with the spatial dis- 

cretization scheme, and it is independent of the angular discretiza- 

tion. It arises in multidimensional problems when the radiation 

beams are not aligned with the grid lines. An evaluation of spa- 

tial discretization schemes used in the discrete ordinates method 

was presented in [15–17] . 

Although Raithby [18] describes that errors due to directional 

and spatial discretization tend to cancel. This cancellation should 

not be relied on; the spatial and directional discretizations should 

be made sufficiently fine that the error due to each is acceptable 

small, and any error cancellation that occurs should be welcomed 

as a bonus. 

The DOM or the finite-volume methods require the evaluation 

of the radiation intensity at the cell faces of the control volumes 

that define the computational grid. Hence, the radiation inten- 

sity at the cell faces must be related to the radiation intensity 

at the grid nodes, which constitute the unknowns of the spatial 

discretized RTE. This relation was initially accomplished using ei- 

ther the STEP or the DIAMOND discretization schemes, which are 

the counterpart of the upwind and central difference scheme in 

Computational Fluid Dynamics (CFD). On the other hand, high- 

order resolution differencing schemes, initially developed by the 

CFD community, have also been used to solve the RTE using DOM. 

The SMART scheme [19] was used in [20] , and the MINMOD [21] , 

MUSCL [22] , CLAM [23] , and SMART schemes were used in [24] . 

Multiple high-order schemes were used by Coelho [25] . As in CFD, 

it has been shown that the radiation intensity field computed us- 

ing these schemes is much more accurate than that obtained us- 

ing the STEP scheme. The genuinely multidimensional (GM) dis- 

cretization of the radiative transfer equation was proposed by Bal- 

sara [26] . This discretization minimizes the diffusion in the free 

streaming limit. Ismail and Salinas [27] used the genuinely multi- 

dimensional schemes to solve radiative heat transfer in a rectangu- 

lar enclosure composed of diffusely emitting and reflecting bound- 

aries and containing homogeneous media that absorbs, emits and 

scatters radiation. 

Initially, in CFD some High-Order (HO) schemes (CENTRAL, 

QUICK) suffered from convergence difficulties and they had oscilla- 

tory behaviors. The main problem associated with the HO schemes 

was their boundedness. The difficulties associated with the devel- 

opment of reliable HO schemes stem from the conflicting require- 

ments of accuracy, stability, and boundedness. The solutions pre- 

dicted with HO schemes are more accurate than those calculated 

using the first order STEP scheme, but HO schemes tend to provoke 

oscillations. 

To suppress oscillations, over the last three decades researchers 

eliminated this shortcoming of the HO schemes. The deficiency 

was removed through the introduction of the convection bounded- 

ness criterion [19,28] , which led to the development of new fam- 

ilies of High-Resolution (HR) schemes in the context of the Nor- 

malized Variable Formulations – NVF [29] , the Normalized Vari- 

able and Space Formulation – NVSF [30] , and the concept of Total 

Variation Diminishing (TVD), TVD schemes have been specially for- 

mulated to achieve oscillation-free solutions and they have proved 

to be useful in CFD calculations [21–23,31–34] . However, bound- 
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