
Journal of Quantitative Spectroscopy & Radiative Transfer 208 (2018) 108–124 

Contents lists available at ScienceDirect 

Journal of Quantitative Spectroscopy & Radiative Transfer 

journal homepage: www.elsevier.com/locate/jqsrt 

Three-dimensional polarized radiative transfer simulation using 

discontinuous finite element method 

Cun-Hai Wang, Lei Qu, Yong Zhang, Hong-Liang Yi ∗

School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150 0 01, PR China 

a r t i c l e i n f o 

Article history: 

Received 16 October 2017 

Revised 11 January 2018 

Accepted 12 January 2018 

Available online 16 January 2018 

Keywords: 

Polarized radiative transfer 

Stokes vector component 

Discontinuous finite element method 

Three-dimensional geometry 

a b s t r a c t 

The polarized radiative transfer problem in three-dimensional scattering media is numerically solved by 

the discontinuous finite element method (DFEM). The discrete elements in the DFEM simulation are as- 

sumed to be discontinuous and the solution domain is connected by modeling the boundary numeri- 

cal flux between adjacent elements, which makes the DFEM numerically stable for solving the radia- 

tive transfer equation. The shape functions are constructed on each element and the transformations 

between a general element and the standard element are presented. The accuracy of the DFEM for three- 

dimensional polarized radiative transfer is validated by comparing DFEM solutions with the published 

data in the literature. The DFEM is then applied to study the polarized radiative transfer problems in a 

cubic medium exposed to an external beam and in a cubic medium with an emitting surface. The distri- 

butions of the Stokes vector components are obtained and discussed. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Polarized radiative transfer within a participating medium has 

attracted the interest of many researchers due to its wide appli- 

cations in the fields of atmosphere and ocean systems [1–4] , op- 

tical imaging [5] , biomedical optics [6] , and astronomy [7,8] . If 

the polarization nature of radiation is ignored, the polarized ra- 

diative transfer problem is reduced to the scalar radiative transfer 

problem where only the approximated intensity of the radiation 

is solved. Exact radiative transfer solutions preserve the polariza- 

tion nature of the radiation, which is generally referred to vector 

radiative transfer [9–12] . However, due to the complexity of the 

vector radiative transfer equation (VRTE) in which four Stokes pa- 

rameters needs to be solved, analytical solutions for the VRTE are 

a critical task. Researchers have been attempting to solve the VRTE 

and some numerical techniques [13–27] have been successfully ap- 

plied to predict the radiative transfer process in participating me- 

dia. Evans and Stephens [28] presented a summary of several com- 

monly used polarized radiative transfer models and their applica- 

tions. Kokhanovsky et al. [29] carried out an inter-comparison of 

several different numerical methods for the vector radiative trans- 

fer case of an underlying black surface. Benchmark results for vec- 

tor radiative transfer in the cases of molecular, aerosol and cloudy 

multiple scattering atmosphere are given in [29] . Very recently, the 
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diation Commission [30] initiated a model competition and the re- 

sults for the one-dimensional plane-parallel model were summa- 

rized. 

The grid-based discontinuous finite element method (DFEM), 

which is first proposed by Reed and Hill [31] and combines the 

salient figures of finite element method (FEM) and finite volume 

method (FVM) [32] , is one of the most popular numerical methods 

for solving the integral-differential equations due to its numerical 

stability and flexibility in mesh grids. In recent years, the DFEM 

has attracted significant consideration and the previous work [33–

35] shows the potential of DFEM for solving radiative transfer 

problems. Very recently, the DFEM has been extended for the first 

time to solve the radiative transfer problem considering the polar- 

ization effect [36–38] , those studies show that the DFEM is accu- 

rate and stable for solving the VRTE in scattering media. However, 

the performance of the DFEM has only been examined in one- and 

two-dimensional cases. To the authors’ best knowledge, there is no 

work reported in the literature dealing specifically with the ap- 

plication of DFEM for the polarized radiative transfer problems in 

three-dimensional (3D) media. In this paper, the DFEM formulation 

is applied to polarized radiative transfer problems in 3D scatter- 

ing media and the Stokes vector component distributions are dis- 

cussed. 

The outline of this paper is as follows. In the following section, 

the mathematical formulation, DFEM discretization of the VRTE, 

and the construction of shape functions are presented. In Section 3 , 

the accuracy of the proposed algorithm for 3D polarized radiative 

transfer is validated by comparing the DFEM results with those in 
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Nomenclature 

I Stokes vector I = ( I, Q, U, V ) T , W/(m 

2 ·sr) 

� radiation direction 

S source term function 

β extinction matrix 

Z scattering phase matrix 

R reflection matrix 

n unit normal vector 

N elm 

number of discrete elements 

N e number of nodes on a discrete element 

M θ number of discrete zenith angles 

M ϕ number of discrete azimuthal angles 

M total number of discrete directions 

I b black body emission, W/(m 

2 ·sr) 

β extinction coefficient, m 

−1 

κa , κs absorption and scattering coefficient, m 

−1 

ω κs / β , scattering albedo 

q irradiance, W/m 

2 

G scalar irradiance, W/m 

2 

r general coordinate vector, m 

x, y, z general coordinates, m 

r st normalized coordinate vector 

ξ , η, γ normalized coordinates 

L x , L y , L z geometrical length of the domain, m 

θ zenith angle, rad 

ϕ azimuth angle, rad 

� scattering angle, rad 

μ μ= cos θ , direction cosine 

w weight function 

φ shape function on general element 

ψ shape function on standard element 

Subscripts 

i, j index for nodes 

Superscripts 

m, m’ index for directions 

literature. In Section 4 , the DFEM is applied to solve the VRTE in a 

cubic medium exposed to an external beam and in a cubic medium 

with a hot surface. Finally, some notable conclusions are drawn in 

the last section. 

2. Theory 

2.1. Governing equation 

The discrete-ordinate form of the vector radiative transfer equa- 

tion for an absorbing and scattering medium can be written as 

[1] 

�m · ∇I ( r , �m ) + βI ( r , �m ) = S ( r , �m ) , (1) 

where I = ( I, Q, U, V ) T is the Stokes vector with the superscript ‘T’ 

denoting the matrix transposition. I is the total-spectral radiation 

intensity, Q is the linear polarization aligned parallel or perpendic- 

ular to the z -axis, U is the linear polarization aligned ±45 ° to the 

z -axis and V is the circular polarization. � is the radiation direc- 

tion, β is the extinction coefficient matrix, and S is the source term 

written as 

S (r , �m ) = κa I b (r ) + 

M ∑ 

m 

′ =1 

Z (r , �m 

′ → �m ) I (r , �m 

′ 
) w 

m 

′ 
, (2) 

where I b = ( I b , 0, 0, 0) T is the medium emission vector with I b de- 

noting the blackbody intensity, Z is the scattering phase matrix, 

Fig. 1. One-dimensional general element and shape functions. 

M is the total number of the discrete directions, �m and �m’ are 

the discrete directions, w 

m’ is the corresponding weight in direc- 

tion �m’ for angular quadrature [39] . 

In the case of the emission and reflection, the boundary condi- 

tion is given as 

I ( r w 

, �m ) = κa I b ( r w 

) + R s I ( r w 

, �m 

′′ 
) 

+ 

1 

π

∫ 
n w ·�m ′ > 0 

R d I ( r w 

, �m 

′ 
) | n w 

· �m 

′ | d �m 

′ 
, (3) 

where the subscript ‘w’ denotes variable values on boundary 

nodes, n w 

denotes the unit outward normal vector of the global 

boundary, �m’ denotes the corresponding incident directions of the 

current diffusely reflected direction �m , it meets the condition of 

n w 

��m’ > 0, �m” denotes the corresponding incident direction of 

the current specularly reflected direction �m , R s and R d are the 

specular and diffuse reflection matrices. 

2.2. Shape function 

In the DFEM application, the continuous computational domain 

is divided into a tessellation of small, non-overlapping, and inter- 

connected sub-regions referred to as elements. Piece-wise approx- 

imations to the governing equation are given over these elements 

and the integral-differential equation is break down into a series of 

linear simultaneous equations. Thus, the space discretization (i.e., 

dividing the domain into discrete elements) procedure reduces the 

continuum problem, which has an infinite number of unknowns, to 

one with a finite number of unknowns at specified points referred 

to as nodes. By dividing the computational domain into a finite 

number of elements, and approximating the solutions for the VRTE 

in a piece-wise manner over these elements by a suitable known 

function, the solutions of the differential equation within the com- 

putational domain can be obtained. The functions employed on 

each element to represent solutions on any location within the el- 

ement are called shape functions [40,41] , and they are obtained as 

follows. 

Fig. 1 shows a general 1D element e ( x ∈ [ x 1 , x 2 ]) with two 

nodes defined on the Cartesian coordinate. By the Lagrangian in- 

terpolation theory, the unknown function u (temperature and ra- 

diation intensity for example) is approximated by a function u ( x ) 

local to the element 

u (x ) = α1 + α2 x, (4) 

where the parameters α1 and α2 are constants to be determined. 

Since there are two constants in Eq. (4) , the information on the 

two adjacent nodes is required to determine the values of α1 and 

α2 , namely 

u 1 = α1 + α2 x 1 , (5a) 

u 2 = α1 + α2 x 2 . (5b) 
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