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a b s t r a c t 

The primary rainbow observed when light is scattered by a spherical drop has been exploited in the past 

to measure drop size and relative refractive index. However, if higher spatial resolution is required in 

denser drop ensembles/sprays, and to avoid then multiple drops simultaneously appearing in the mea- 

surement volume, a highly focused beam is desirable, inevitably with a Gaussian intensity profile. The 

present study examines the primary rainbow pattern resulting when a Gaussian beam is scattered by 

a spherical drop and estimates the attainable accuracy when extracting size and refractive index. The 

scattering is computed using generalized Lorenz–Mie theory (GLMT) and Debye series decomposition of 

the Gaussian beam scattering. The results of these simulations show that the measurement accuracy is 

dependent on both the beam waist radius and the position of the drop in the beam waist. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The measurement of drop size, velocity and refractive index has 

become commonplace in the process industry for quality control 

and is widespread in academic research. The physical principles 

used for optical drop characterization can be classified into direct 

imaging, intensity or intensity ratio, interferometry, time shift and 

Raman scattering [1] . Direct imaging techniques can be used for 

drops of size above the diffraction limits of the optical system [2] . 

Using a high-speed camera the drops can also be tracked in time 

to yield drop velocity [3,4] . The shadow Doppler technique also 

uses imaging for particle size and a laser Doppler interferometer 

for velocity measurement [5] . The time-shift technique, also known 

as pulsed-displacement technique, can measure size, velocity, and 

refractive index of transparent particles [6,7] . However, the most 

widespread and most accurate technique for obtaining size and ve- 

locity of (homogeneous spherical) drops remains phase Doppler in- 

terferometry [8] . 

Nevertheless, the size and the refractive index (hence the tem- 

perature) of a drop can also be determined using the primary rain- 

bow [9] . The rainbow technique is applicable to spherical drops, 

but also measurements with ellipsoidal drops have been demon- 

strated [10,11] . The rainbow scattering patterns from spheroidal 

oblate drops were measured by Marston and coworkers [12,13] . 
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Furthermore, using a relation between aspect ratio and curvature 

of the rainbow fringes, the aspect ratio of oblate drops aligned 

with the optical axis was measured [14] . The radial refractive index 

gradient of particles and temperature gradient of a liquid cylin- 

der were also studied using the rainbow technique [15,16] and 

the Möbius shift, i.e. the deviation between the rainbow angle for 

spheroidal and spherical droplets, was investigated using a vecto- 

rial complex ray model [17,18] . The same model was used to study 

the rainbow scattering for oblate drops [19] . For simulating rain- 

bows of drops, a physically based model was derived, which is 

based on ray tracing extended to account for dispersion, polariza- 

tion, interference, and diffraction [20] . For a deformed liquid jet, 

the shift of the rainbow position in the horizontal and vertical di- 

rections was investigated by experiment and simulation [21] . 

A generalization of the rainbow technique, known as global 

rainbow thermometry (GRT), was introduced by van Beeck et al. 

[22] to measure the mean size and temperature of an ensem- 

ble of spray drops. The technique has been compared with the 

phase Doppler technique [23] to assess its accuracy and to eval- 

uate which effective drop diameter is measured. The GRT has been 

used for the measurement of a liquid–liquid suspension [24] and 

spray drops in a large containment vessel [25] . Additionally, the 

sensitivity of GRT to non-sphericity of the drop was investigated 

by simulation and experiment [26,27] . Based on a one-dimensional 

spatial filter in the Fourier domain, a new optical configuration 

of the one-dimensional rainbow technique was recently proposed 

[28] . This one-dimensional phase rainbow refractometer has been 
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developed for the accurate measurement of instantaneous refrac- 

tive index and drop size [29] . However, the GRT operates on light 

scattered from a large ensemble of drops, consequently not offer- 

ing high spatial resolution. The advantage is that the random ori- 

entation of any non-spherical drops in the ensemble will lead to a 

reduction of any influence that non-sphericity of single drops has 

on the results. One possibility to achieve a higher spatial resolution 

is to focus the illuminating beam stronger and the present contri- 

bution investigates the influence of this focusing on the resulting 

primary rainbow pattern. 

Lorenz–Mie theory provides a rigorous solution to describe the 

scattering of a linearly polarized plane wave by a homogeneous 

spherical particle [30] . It forms the basis of a number of tech- 

niques for optical particle characterization in various fields [31,32] . 

However, classical Lorenz–Mie theory fails to accurately describe 

the scattering characteristics of particles illuminated by a shaped 

beam. For this situation Gouesbet and coworkers [33] developed 

the generalized Lorenz—Mie theory (GLMT), which rigorously de- 

scribes the interaction between an arbitrarily shaped beam and a 

regularly shaped particle. During the last three decades, the GLMT 

for spherical particles has been developed to a state of matu- 

rity [33–41] and extensions to the GLMT allow prediction of light 

from spheroidal particles [42–46] . Nevertheless, existing programs 

within the framework of GLMT for light scattering from spheroidal 

particles with arbitrary orientation still have limitations for cer- 

tain sizes [45,46] . For scattering from spherical, non-spherical, or 

coated particles, the GLMT can be complemented by computations 

using the Debye series [47–53] . The rainbow scattering of a spher- 

ical particle, a non-spherical particle, and a circular cylinder were 

studied by using Debye series [47–49,51,53] . In the present study, 

both GLMT and decomposition using the Debye series will be used. 

This paper is organized as follows: Section 2 presents the com- 

putational procedure used to explore the influence of the Gaus- 

sian beam on the position of the rainbow, using a combina- 

tion of the Airy function, Debye series decomposition, and GLMT. 

Section 3 discusses the inversion of the primary rainbow pat- 

tern ( p = 2) using GLMT, to yield size and relative refractive index. 

Section 4 presents conclusions. 

2. Influence of Gaussian beam shape on the primary rainbow 

pattern 

A spherical coordinate system ( r, θ , φ) centered on the particle 

is used and the relative refractive index and wavelength are de- 

noted as m and λ respectively. A further Cartesian coordinate sys- 

tem ( x,y,z ), also centered on the particle with the z-axis along the 

incident beam propagation direction, is used to describe the beam 

placement. Offsets of the beam will be examined in the y direc- 

tion. As a first step, the influence of the beam waist radius on the 

position of the rainbow is investigated. This is performed by exam- 

ining the rainbow arising only from scattered rays of second-order 

refraction ( p = 2), as obtained using the Debye decomposition of 

the Mie coefficients, as described in [50] . The Gaussian beam axis 

is placed at the position of the Descartes ray [12] , i.e. the incident 

ray exiting the particle at the rainbow angle according to Airy the- 

ory [10] . For instance, for a particle of radius r = 50 μm and relative 

refractive index of m = 1.33, the Descartes ray enters the particle at 

an offset of y = ± 43.12 μm. Fig. 1 (a) shows the computed scattered 

light intensity in the primary rainbow region for water drops of 

different radii using a wavelength of λ= 0.65 μm and a beam waist 

radius of ω 0 = 100 μm, whereby the curves have been normalized 

using their respective maximum amplitude. Fig. 1 (b) shows how 

the position of the first peak changes with beam waist radius. As 

shown in Fig. 1 (a), all intensity distributions for different parti- 

cle sizes exhibit a common inflection point at the scattering angle 

θ = 137.5 °, which is the rainbow angle according to geometric op- 

tics. Furthermore, it can be seen that as the beam waist increases, 

or the particle becomes smaller, the position of the first peak in 

the primary rainbow approaches the value corresponding to illu- 

mination by a plane wave. This limit is reached when the beam 

waist radius is approximately equal to the radius of the drop. 

Using the Debye series decomposition, the light intensity distri- 

bution in the primary rainbow region shown above, also called the 

rainbow pattern, was computed using only the second-order re- 

fracted rays. However, the generalized Lorenz–Mie theory [40] pro- 

vides a more complete result, including contributions from other 

scattering orders. Using GLMT, the rainbow pattern arising from 

illumination with a Gaussian beam ( ω 0 = 100 μm) centrally posi- 

tioned at the Descartes ray is shown in Fig. 2 for three different 

drop radii (50 μm, 150 μm, and 200 μm). For small drops, a ripple 

structure exists, arising from interference of second-order refracted 

rays and reflected rays [10] . 

If a ripple structure exists, and the intensity curve is passed 

through a low-pass Gaussian filter, then curves similar to those 

shown in Fig. 1 (a) are obtained. The filter cut-off frequency is iter- 

atively chosen, such that the first two peaks are still easily distin- 

guishable. For larger drops and for the same Gaussian beam illu- 

mination, the intensity of the reflected ray decreases and the am- 

plitude of the ripples also decrease, as observed in the results for 

the larger drops shown in Fig. 2 . For ratios of drop-to-beam-waist 

radius above 2, the ripple structure is virtually non-existent. 

3. Drop characteristics computed using generalized Lorenz–Mie 

theory 

According to geometrical optics, the rainbow angle only de- 

pends on the refractive index of the drop. According to Airy theory, 

the relation between the geometrical rainbow angle and the angles 

of the first two peaks in the rainbow diagram is given by [11] : 

θrg = 

θ1 − C θ2 

1 − C 
(1) 

where θ1 and θ2 are the angles of the first two peaks of the fil- 

tered rainbow pattern. The parameter C is a constant, which will 

be given below. 

If one can measure θ1 and θ2 , then the refractive index can 

be calculated using the relation between the geometrical rainbow 

angle and the refractive index, given as: 

θrg = π + 2 sin 

−1 

√ 

4 − m 

2 

3 
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2 

3 m 
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The relation between the drop radius ( r ), the refractive index 

and the peak angles (i.e. θ1 and θ2 ) is given by: 

r = 

λ

8 
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where α1 = 1.0874, α2 = 3.4668 and C = α2 / α1 . In the follow- 

ing analysis, the rainbow pattern is calculated using GLMT and 

Eqs. (1) –(3) are then used to extract the refractive index and size 

of the drop, solving Eq. (2) iteratively for m . 

First, the influence of the waist radius of a Gaussian illumina- 

tion beam is investigated. According to geometrical optics, the pri- 

mary rainbow arises from the Descartes ray. For example, for a 

water drop with r = 100 μm, the center position of Descartes ray 

is y = ± 86.24 μm. Computations of the rainbow pattern for a Gaus- 

sian beam centered on the Descartes ray for different beam waist 

radii are performed first. The computed rainbow patterns are then 

used to compute the drop size and refractive index. Table 1 sum- 

marizes the results. For a water drop with r = 10 0 0 μm and a Gaus- 

sian beam waist of radius ω 0 = 80 μm, the relative error of the 

computed water drop radius is −5.63%. As the beam waist radius 
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