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a b s t r a c t 

A new dynamic-system approach to the problem of radiative transfer inside scattering and absorbing 

media is presented, directly based on first-hand physical principles. This method, the Dynamic Radia- 

tive Transfer System (DRTS), employs a dynamical system formality using a global sparse matrix, which 

characterizes the physical, optical and geometrical properties of the material-volume of interest. The new 

system state is generated by the above time-independent matrix, using simple matrix-vector multiplica- 

tion for each subsequent time step. DRTS is capable of calculating accurately the time evolution of photon 

propagation in media of complex structure and shape. The flexibility of DRTS allows the integration of 

time-dependent sources, boundary conditions, different media and several optical phenomena like re- 

flection and refraction in a unified and consistent way. Various examples of DRTS simulation results are 

presented for ultra-fast light pulse 3-D propagation, demonstrating greatly reduced computational cost 

and resource requirements compared to other methods. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Radiative transfer models attempt to describe the temporal and 

spatial behavior of photon propagation through scattering and ab- 

sorbing media, which is important in many scientific areas such 

as astrophysics [1–3] , oceanography, high energy physics (neutrino 

transport) [4] , thermal transfer [5–7,39] , image processing and, in 

recent years, bio-sciences [8–11] . Starting from a conceptual frame- 

work for a simple description of the physical phenomenon, the 

well-known “Radiative Transfer Equation” (RTE) was developed: 
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dS ′ = 0 (1) 

Many different solutions or approximations for RTE have been 

proposed [12] , such as Monte Carlo [13,14] , Diffusion Approxima- 

tion, calculations using different basis functions [4,6,15–17] , Finite- 

Element-like methods (FEM) [1,5,7] and combinations of the above 

[5,8,10,18,19] . In a very simple case a solution has been found 

based on a “moving” unity partition of normal distribution, de- 

creasing over time by an exponential factor according to the ab- 

sorption parameter. Diffusion approximation connects the directed 
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flow with undirected flow by a constant that simplifies the math- 

ematical problem and turns it to an elliptical partial differen- 

tial equation. However, this is not physically true near sources or 

boundaries. Another approach, use spherical harmonics [4,6,20,21] , 

does not lead to an applicable solution because of the symmetry of 

base functions that makes almost impossible to represent a direc- 

tional flow. Mathematical approximations based on finite element 

methods (FEM) have been proposed by many authors [1,5,7,22] , 

treating complicated structures such as the human body with par- 

titioning of Euclidean space and creation of mesh structures. These 

methods however do not preserve the positivity of intensity and 

produce potential instabilities because of the mathematical type of 

the RTE model. A combination of FEM with Diffusion approxima- 

tion reduces the instability but does not fully resolve the problem 

[8,18,19] . 

Because of mathematical difficulties [20,21,23,24] , procedures 

based on Mode Carlo (MC) methods are believed to be the best 

practice, since calculations are going down to physical processes. 

Parallel array processors have been used [25,26] to handle the 

huge amount of calculations required by this type of methods. 

Usually in standard MC techniques only space partition is im- 

plemented, so there is a lack of time and direction informa- 

tion and these are not suitable to describe transient phenomena. 

Specifically, since only spatial information is given, there is no 

practical way to convolve the results with any specific pulsed- 

shaped source. In time-dependent MC [27,28] the computational 
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requirements explode, especially in systems with dense partition- 

ing in space and time, as this method generally requires compu- 

tational effort proportional to the dynamic range of the expected 

values – here on the order of 10 20 . These MC shortcomings are 

particularly evident in cases involving ultra-short light pulses. 

A solution of the time-dependent photon transport has been 

attempted by Fourier transform [8,23] , “Time-dependent Monte- 

Carlo” [29,30] or other time-domain methods [31–33,40–42] . These 

can lead to a meaningful approximate solution only when source 

power changes are slow enough compared to the fast rates of scat- 

tering effects. Under these circumstances, intensity will represent 

the mean-time value under the effect of power-source changes. But 

when source changes are fast, frequencies of the source will be 

convolved with those of the system, a fact that makes computa- 

tions impractical for very short time-scale phenomena, due to the 

range of frequencies involved, which tend to infinity. Recent de- 

velopments in medical diagnostics, however, using fs laser pulses, 

e.g. for internal tumor imaging, will require accurate solutions of 

the radiation propagation problem in absorptive-diffusive media in 

very short time scales. 

There are many difficulties regarding numerical solution of the 

RTE, or its physical incompleteness or inconsistencies [24,34,35] . To 

overcome these problems, a new method is described in this pa- 

per, based on the physical photon-matter interaction in a consis- 

tent treatment. This method, the Dynamic Radiative Transfer Sys- 

tem (DRTS), computes the time evolution of photon distribution of 

inside scattering absorbing media by the construction of a proba- 

bilistic dynamic system. This is especially useful in bio-engineering 

for e.g. solving the Optical Tomography “forward problem” [36] us- 

ing pulsed excitation. . In such cases DRTS is quite capable to de- 

liver accurate results, where other methods might be questionable. 

DRTS is also capable of calculating accurately the time evolution of 

photon propagation in media of complex structure and shape. Ad- 

ditionally, DRTS allows the integration of time-dependent sources, 

boundary conditions, different media and several optical phenom- 

ena (like reflection and refraction) in a unified and consistent way. 

Especially for the purpose of instrument design, the new DRTS 

method provides a tool that allows an accurate measurement- 

system implementation. Therefore DRTS can be viewed as an im- 

proved and generalized solution method, accurately treating time 

effects in both short and long time scale, which avoids the incon- 

sistencies and drawbacks of the RTE model. 

In the next section the physical phenomenon will be expressed 

as a dynamical system and the computation of the system matrix 

elements will be detailed. Time evolution of the photon propaga- 

tion can afterwards be computed by the simplest linear algebra op- 

erations (matrix-vector multiplication and vector additions). Then, 

the algorithm based on the theoretical analysis is constructed and 

simulation results are initially demonstrated for several cases of 

isotropic media with different optical properties. In the last sec- 

tion, a thorough comparative analysis of DRTS vs. the other meth- 

ods will be detailed. 

2. Theoretical foundation of photon propagation 

The Dynamic Radiative Transfer System (DRTS) is a new method 

that models photon propagation through scattering and absorbing 

media, applicable to time intervals down to the order of femtosec- 

ond. 

Absorption and scattering processes are considered indepen- 

dent. There are three measures that characterize absorption and 

scattering probabilities, the absorption parameter μa the scattering 

parameter μs and the probability kernel g ( S, S ′ ) expressing the di- 

rectional change. The first two are measures over the path of pho- 

tons that travel inside the medium. The third one expresses the 

conditional possibility that a photon changes direction from S to S ′ 
if it has been scattered. 

By definition 1/ μs expresses the mean value of the exponen- 

tial probability for the photons to be subjected to scattering inside 

the medium. The expected population of photons that are scat- 

tered ( N 

S ) during a time step �t can be derived by the cumulative 

distribution function (CDF) of the exponential distribution: 

N 

S ( t + �t ) = N(t) P ( photon scattering during time interval �t ) 

⇒ N 

S ( t + �t ) = N(t)( 1 − e −μs c�t ) (2) 

Correspondingly the photon population that is not subjected to 

any scattering event ( N 

0 ), during the time interval �t , will be: 

N 

S 0 ( t + �t ) = N ( t ) − N 

S ( t + �t ) = N ( t ) e −μs c�t (3) 

The probability that a photon is subjected to k scattering events 

in �t can be derived by the Poisson distribution with expected 

value μs c �t . The population of scattered photons can be grouped 

in different populations N 

S 0 , N 

S 1 , N 

S 2 ,… according to the number of 

the scattering events encountered, so: 

N 

S i ( t + �t ) = N ( t ) P ( i = scatter events ) = N ( t ) 
e −μs c�t ( μs c�t ) 

i 

i ! 

(4) 

From the above equation, it can be proved that for very small 

time intervals the probability of the photon population to be sub- 

jected to more than one scattering event is negligibly small. This 

can be proved by calculating the following limit, for i > 1: 

lim 

�t→ 0 

N 

S i 

N 

S 1 
= lim 

�t→ 0 

( 

e −μs c�t ( μs c�t ) 
i 

i ! 

e −μs c�t 

) 

= lim 

�t→ 0 

( μs c�t ) 
i 

i ! 
= 0 , 

when μs c�t � 1 (5) 

At this point it might appear that only single-scattering events 

are considered. According to Eq. (5) as �t gets smaller, the prob- 

ability of multiple scattering is exponentially reduced. However, 

our method has the capability of including higher-order scattering 

events during this interval �t , if so desired, as it will be detailed 

later in Section 3 , after the construction of the system matrix A. 

Essentially multiple scattering events are produced as a combina- 

torial sequence of single-scatterings. 

To conserve probability and therefore energy, while ignor- 

ing multiple scattering events, we approximate the probability of 

one scattering event P ( i = 1) as 1 − P ( i = 0). Thus, regarding the 

scattering process we can split the photon population in two 

groups N 

0 and N 

1 : 

N 

S 0 ( t + �t ) = N ( t ) e −μs c�t (6) 

N 

S 1 ( t + �t ) = N(t)( 1 − e −μs c�t ) , when μs c�t � 1 (7) 

For the absorption process, by definition 1/ μα expresses the 

mean value of the exponential probability for the decay of pho- 

tons that travel inside the medium. The expected population ( N ) 

of photons surviving after a small time step �t can be derived by 

the CDF of the exponential distribution: 

N ( t + �t ) = N ( t ) ( 1 − P ( absorption during �t ) ) 

⇒ N ( t + �t ) = N ( t ) e −μa c�t 
(8) 

By combining both scattering and absorption processes, the ex- 

pected population group of photons surviving after a small time 
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